

CREATION D'UNE RESERVE MARINE DANS LE GOLFE DE BEAUDUC

ETAT INITIAL - ANNEES 2014-2015

CREATION D'UNE RESERVE MARINE DANS LE GOLFE DE BEAUDUC ETAT INITIAL - ANNEES 2014-2015

Partenariat entre

PARC NATUREL REGIONAL DE CAMARGUE

Mas du Pont de Rousty,13200 Arles

Tél.: (33)4.90.97.10.40. Fax: (33)4.90.97.12.07.

et

GIS POSIDONIE

Institut Pythéas, MIO, case 901 Campus de Luminy 13288 Marseille Cedex 09 Tél. (33)4.86.09.05.78 - Fax. (33)4.86.09.43.

Responsable scientifique du partenariat

Professeur Charles-François BOUDOURESQUE, M.I.O (UMR 235 – Aix Marseille Université)

Tel: (33)4.86.09.05.74 - Courriel: charles.boudouresque@univ-amu.fr

Responsable du programme

Laurence LE DIREACH

Tél.: (33)4.86.09.05.73 – Courriel: <u>laurence.ledireach@univ-amu.fr</u>

Remerciements

Aux agents du Parc naturel régional de Camargue pour leur aide dans l'organisation des missions de terrain et aux pêcheurs professionnels Daniel Deschampes, Georges Gauzargues et Yvon Vannetti pour leur accueil et leur collaboration.

Crédits photographiques : Laurence Le Diréach, Julien Bonhomme, Laureline Chassaing, Celia Losson, GIS Posidonie

Dossier: 1301

Citation du document

LE DIREACH L., BONHOMME J., ASTRUCH P., CHASSAING L., GOUJARD A., BONHOMME P., LOSSON, C., 2015. *Création d'une réserve marine dans le golfe de Beauduc. Etat initial. Années 2014-2015.* Partenariat Parc naturel régional de Camargue & GIS Posidonie publ., Fr. : 1-80.

SOMMAIRE

RI	ESUME		7
1	INTRO	ODUCTION	9
2	ACCO	MPAGNEMENT SCIENTIFIQUE	11
3	EVAL	UATION INITIALE DU PEUPLEMENT DE POISSONS	13
	3.1 Peu	plement adulte : pêches scientifiques au filet	13
	3.1.1	Echantillonnage au filet	14
	3.1.2	Analyse des données	16
	3.1.3	Richesse spécifique des captures	17
	3.1.4	Biomasse des captures conservée et rejetée	17
	3.1.5	Analyse saisonnière de la composition du peuplement adulte	19
	3.1.5.1	Hiver	19
	3.1.5.2	Printemps	20
	3.1.5.3	Eté	22
	3.1.6	Analyse spatiale du peuplement adulte	23
	3.1.7	Structure de taille des espèces dominantes	32
	3.2 Peu	plement juvénile : pêches scientifiques au petit chalut à perche	35
	3.2.1	Echantillonnage au chalut	35
	3.2.2	Composition des captures en invertébrés	37
	3.2.2.1	Densité	37
	3.2.2.2	Biomasse	38
	3.2.2.3	Diversité gamma	38
	3.2.2.4	Diversité spécifique	39
	3.2.2.5	Abondance	40
	3.2.2.6	Synthèse des résultats concernant les invertébrés	41
	3.2.3	Composition des captures en poissons	42
	3.2.4	Analyse spatiale du peuplement de poissons juvéniles	43
	3.3 Disc	cussion et conclusion	47
	3.3.1	Technique d'échantillonnage	48
	3.3.2	Rejet des captures non commercialisables	48
	3.3.3	Caractéristiques du peuplement de poissons adultes	49
	3.3.4	Caractéristiques du peuplement de poissons juvéniles	50
4	SUIVI	DE LA COLONISATION DE RECIFS ARTIFICIELS A JUVENILES (I	DNAP)52
	4.1 Peu	plement juvéniles : comptages visuels	52
	4.1.1	Plan des dispositifs	52
	4.1.2	Protocole d'échantillonnage	54
	4.1.3	Déroulement des opérations	54
	4.2 Rési	ultats des comptages et de l'observation des DNAP	54
	4.2.1	Richesse spécifique	54
	4.2.2	Densité	57
	4.2.3	Caractéristiques des assemblages des différents modules	57

	4.3 Etat de colonisation des DNAP	59
	4.4 Discussion	61
	4.5 Conclusion	63
5	CONCLUSION GENERALE	64
6	BIBLIOGRAPHIE	65
7	ANNEXES	68

RESUME

La réserve de Beauduc a été créée en 2013 à la demande des pêcheurs professionnels par le Parc naturel régional de Camargue (PNRC) au milieu du golfe de Beauduc en Camargue. Afin d'établir un état initial de la faune ichtyologique (adultes et juvéniles) avant toute modification du milieu liée aux mesures de gestion, des échantillonnages par pêche ont été réalisés dans la zone qui venait d'être mise en protection. Ces prélèvements avaient pour objectif de qualifier et de quantifier les captures réalisées avec un type de pêche pratiqué par les pêcheurs aux petits métiers de la zone.

Les adultes ont été échantillonnés au filet trémail avec l'aide des pêcheurs professionnels des Saintes Maries de la mer et de Beauduc (6 stations, 3 jours (24h) de pêche consécutifs par station) lors de 3 campagnes en mars, juin, et septembre 2014. Les résultats des campagnes de pêche au filet montrent des variations saisonnières dans la composition et la distribution des poissons adultes. Le maquereau, *Scomber scombrus* domine le peuplement en nombre, en juin comme en mars. En mars (hiver), les autres espèces les plus abondantes sont la raie *Raja asterias* et la dorade *Sparus aurata*. En juin, le grondin perlon *Chelidonichthys obscurus* et la dorade *S. aurata* sont les plus abondants mais dans des proportions deux fois inférieures à celle de mars. Les espèces de la famille des Soleidés sont également présentes en juin avec 14 % des individus pêchés lors de cette campagne. En septembre, *Raja asterias* et les pleuronectiformes (*Solea senegalensis, Solea solea* et *Scophthalmus rhombus*), dominent en constituant 30% de la biomasse capturée.

Le nombre, la quantité et la composition des captures de poissons varie fortement d'une saison à l'autre. Les rendements moyens (CPUE/100 m de filet) obtenus lors de ces pêches scientifiques sont de l'ordre de 3 kg en mars, 1 à 1.5 kg en juin et 0.5 à 1 kg début septembre.

Aucune variation spatiale n'est observée entre les six stations de pêche au filet qu'elles soient situées dans ou en dehors de la réserve de Beauduc, à l'Est ou à l'Ouest, plus près de la côte ou au large. L'analyse des tailles des espèces et celle de la taille de maturité (L50) faite sur les données des deux premières campagnes montre que la plupart des espèces capturées au filet ne sont pas matures, ce qui soulève la question de la taille minimale de capture.

Les juvéniles ont été échantillonnés à l'aide d'un petit chalut expérimental à petite maille (5 stations, 3 traicts par station). Lors de la campagne de chalutage de juin, les poissons de petite taille du golfe de Beauduc font partie à 64 % de la famille des gobiidés et 24 % sont des juvéniles de pleuronectiformes. La densité d'adultes d'espèces de petite taille et de juvéniles représente une moyenne de 530 ± 215 individus/ha, toutes espèces confondues. Le nombre moyen de juvéniles n'est pas significativement différent mais la répartition des espèces varie entre les stations. Les facteurs 'profondeur' et 'nature du substrat' sont les variables principales déterminant la distribution des espèces. Des invertébrés ont également été prélevés et identifiés. En mars, les captures de poissons sont peu importantes (64 individus pour 18 chalutages). Les gobiidés sont nettement moins abondants en hiver et les pleuronectiformes dominent en nombre : 39% des individus récoltés étaient des gobies *Pomatoschistus minutus* et 24% des arnoglosses *Arnoglossus laterna*, enfin 15% des poissons étaient des *Buglosidium luteum*. Les autres espèces représentaient moins de 10% des captures.

En outre, une exploration des fonds de la réserve a été faite en plongée notamment pour constater l'état de colonisation des lauzes connues dans le golfe et pour réaliser quelques comptages visuels de poissons en juillet 2014.

Une expérimentation de dispositifs de nurseries artificiels a été faite au sein de la nouvelle réserve afin d'évaluer leur efficacité et leur pertinence dans un écosystème de fonds meubles réputés riches en ressources trophiques. L'installation des récifs a été achevée en août 2014 et une expertise des modules et des comptages de poissons ont été réalisés début octobre 2014 et fin juin 2015. Les structures ont résisté à la houle de l'hiver et ont été partiellement enfouies dans leur partie basse par le remaniement sédimentaire. Des juvéniles de rouget, de serran et de sars ont été observés à l'automne en petit nombre. Au printemps 2015 de nombreux adultes colonisaient les récifs (loups, congres).

Les données collectées sur la faune ichtyologique et quelques résultats concernant le macrobenthos viennent compléter les inventaires réalisés en bord de plage (0-2 m) à la senne tournante par Heloin (2004 et 2005) et dans le golfe (10 et 20 m) avec le même chalut à perche par Vacquier (2007, 2008).

1 Introduction

Le golfe de Beauduc situé au cœur de la zone marine du delta du Rhône, en Camargue, est constitué de substrats meubles dont la granulométrie varie du sable grossier à la vase terrigène, directement influencée par les apports rhodaniens. Les substrats meubles sont constamment remaniés par l'hydrodynamisme particulier de la région. Les vents dominants Mistral et Tramontane, chassent l'eau de surface vers le large entraînant une remontée d'eau profonde renforçant l'upwelling. Une branche du courant liguro-provençal provenant de l'Est entre dans le golfe pour former une gyre favorable à la concentration de larves de poissons et entrainant les eaux adoucies par le Rhône. La faible profondeur, le fort éclairement et les apports du Rhône, offrent des conditions favorables à leur développement (Vasconcelos et al., 2009). Les 'petits fonds' du golfe de Beauduc - la profondeur ne dépasse pas 15 m au Nord d'une ligne reliant la pointe de Beauduc aux Saintes-Maries-de-la-Mer - sont essentiellement constitués de vase, au centre et de sable, en périphérie (Fig. 1). Le golfe de Beauduc est identifié comme une zone de nurserie notamment pour les poissons plats. Le golfe compte aussi une macrofaune benthique riche et diversifiée qui attire de nombreuses espèces de poissons pélagiques et démersaux qui viennent s'y nourrir, notamment les dorades lors de leurs déplacements saisonniers.

La ressource halieutique du golfe et son exploitation par les pêcheurs professionnels aux petits métiers (fileyeurs) sont menacées par la pratique illégale d'arts traînants (chalut), normalement réservée au-delà des 3 milles nautiques. Depuis 1989 et l'implantation de récifs de protection (de type 'sea rocks', Francour *et al.*, 1991), cette activité est devenue plus sporadique mais perdure encore. Afin de protéger et de mieux gérer le golfe de Beauduc, les pêcheurs aux petits métiers ont demandé la création d'une réserve marine (cantonnement de pêche créé par Arrêté JORF n°0253 du 30/10/2013) et une gestion halieutique concertée de cette zone marine du Parc naturel Régional de Camargue (PNR Camargue).

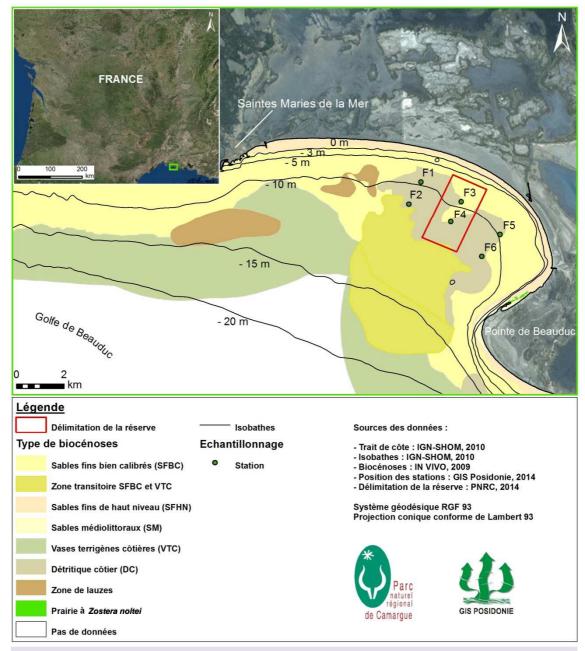


Figure 1 : Nature des fonds et localisation des stations échantillonnées au filet dans le golfe de Beauduc (2 à l'intérieur et 4 à l'extérieur). Le rectangle rouge représente les limites de la réserve marine.

Le Parc est chargé de la gestion et du suivi du cantonnement de pêche du golfe de Beauduc et a demandé au GIS Posidonie et à l'Institut Méditerranéen d'Océanologie (MIO) de l'accompagner scientifiquement dans cette démarche notamment pour la programmation scientifique et la mise en place de suivis. Le partenariat entre le Parc, le GIS Posidonie et le MIO porte principalement sur les thèmes suivants :

- 1. La programmation scientifique et le plan de gestion de la réserve marine :
- les objectifs scientifiques du plan de gestion et de la programmation
- l'élaboration des protocoles de suivi
- l'établissement de l'état initial

- la proposition de programmes de recherche
- le montage commun de programmes de recherche et de réponses à appels à projets.

2. Le suivi des poissons adultes et juvéniles :

- la participation aux suivis des adultes et juvéniles de poissons : échantillonnage, plongées, traitement des données,
- la formation du personnel du Parc au suivi,
- la mise à disposition de moyens pour la réalisation de ces missions.

Les activités du partenariat sont présentées dans les différentes instances du Parc en lien avec la réserve marine du golfe de Beauduc (Comité de pilotage Natura 2000, comité de pilotage de chaque action, Conseil scientifique de la réserve etc.). Le partenariat est valorisé aussi souvent que possible par différents moyens de communication : revue 'Visages de Camargue', lettre Natura 2000 du Parc, site internet, colloques...

Un programme scientifique a été défini après concertation entre le Parc et les scientifiques pour une durée de 2 années. Ce programme se conclut par le présent rapport rassemblant la réflexion et les avancées du programme, les actions entreprises et les principaux résultats, et, le cas échéant, des propositions de mesures de gestion et de suivis à mettre en place.

La réserve de Beauduc a été créée avec un statut de cantonnement de pêche le 25 septembre 2013. Les premières investigations dans le cadre de l'état zéro ont débuté le 13/03/2014 par les pêches scientifiques réalisées avec les fileyeurs des saintes Maries de la Mer et de Beauduc. Le balisage définitif de la réserve a été mis en place à l'automne 2014.

Le présent rapport final regroupe l'ensemble des résultats de l'état initial. La première partie des pêches scientifiques (filets : mars et juin et chalut : mars) a fait l'objet d'une première analyse de données dans le cadre du Master d'Océanologie de Julien Bonhomme (Bonhomme, 2014) présentée au Comité de pilotage de la réserve en septembre 2014. Le résultat des plongées initiales et de la visite des nurseries artificielles en octobre 2014 ont été présentés au Parc lors de réunions. L'analyse des données des pêches au chalut a fait l'objet de 2 rapports de stages étudiants de l'Université d'Aix-Marseille : Laureline Chassaing et Celia Losson.

2 Accompagnement scientifique

Le PNR de Camargue a souhaité être accompagné par des scientifiques pour mettre en place un suivi pertinent de l'efficacité de sa gestion. Ce suivi au sens large comprend en priorité la mise en place d'un suivi du peuplement de poissons mais des suivis particuliers sur d'autres compartiments devront être envisagés à plus ou moins longue échéance dont il conviendra de déterminer la priorité et la pertinence. L'accompagnement scientifique du Parc par l'Institut Méditerranéen d'Océanologie (MIO) et le GIS Posidonie comprend également la consultation d'experts pour la mise en place de plans d'échantillonnage de différentes espèces ou de peuplements, la validation de stratégies de gestion en vue d'optimiser la conservation et aussi d'appréhender les conséquences sur les usages ainsi que l'accès à la connaissance sur la biologie et l'écologie des espèces marines côtières.

Cet accompagnement doit s'effectuer au cours de réunions régulières qui ont été pour la première année : une réunion au démarrage le 27/06/2013, une réunion d'avancement concernant les juvéniles le 11/02/2014, la participation au Comité de pilotage de la réserve le18/09/2014, une réunion restreinte du Conseil Scientifique le 11/12/2014 avec le Parc et une réunion du Conseil scientifique le 06/05/2015 suivie d'une participation au Comité Technique sur l'expérimentation des nurseries l'après-midi. Les experts sont également ponctuellement consultés par téléphone ou par mail dans leur spécialité (Marc Verlaque à propos des herbiers de *Zostera*, par exemple). Plus globalement, les échanges entre les scientifiques et le Parc ont permis de partager la connaissance acquise au cours des deux dernières années en vue de faire avancer la réflexion générale concernant la conservation et le maintien des usages dans la zone. A l'issue de ces 2 années une aide sera apportée à l'élaboration et la rédaction du plan et de documents de gestion, pour la partie connaissance scientifique.

Une sortie sur le terrain a été organiosée lors de la réunion de démarrage afin que les membres du Conseil Scientifiques se rendent mieux compte de l'échelle du territoire à gérer et de la qualité de l'environnement marin côtier (Fig.2).

Figure 2: Visite du site de Beauduc par le Conseil Scientifique animée par Delphine Marobin.

Le Parc peut s'appuyer sur l'avis consultatif et l'expertise de chercheurs du M.I.O. appartenant au CNRS et à Aix-Marseille Université et qui contribuent de façon informelle au cadrage du plan de gestion de la réserve et à la mission de conservation des espaces et des espèces.

L'un des objectifs du partenariat est, aussi à moyen terme, de permettre au Parc de mener en autonomie et en routine l'acquisition de certaines données scientifiques de terrain (recensement d'espèces, pêches scientifiques). Cette formation s'est effectuée en particulier au cours des embarquements à bord des bateaux des pêcheurs professionnels lors des opérations de pêche expérimentale en 2014.

3 Evaluation initiale du peuplement de poissons

L'objet de la création de la réserve de Beauduc étant une meilleure gestion de la ressource halieutique avec les pêcheurs aux petits métiers, la priorité était de réaliser un échantillonnage de référence du peuplement de poissons (adulte et juvénile) avant la modification des mesures de gestion. La mise en protection intégrale d'une aire de 450 ha dans la zone de nurserie du golfe et l'expérimentation de l'efficacité de création d'habitats pour postlarves d'espèces démersales pourraient en effet modifier sensiblement la densité et la composition des assemblages de poissons. Pour ce faire, des pêches expérimentales ont été envisagées avec une participation des pêcheurs professionnels pour l'échantillonnage des adultes et le support du navire océanographique AntedonII de l'INSU/CNRS pour l'échantillonnage des juvéniles. La démarche choisie par le Parc intègre donc, dès le départ, une contribution à la gestion concertée de la zone par des travaux conjointement menés par les gestionnaires, des usagers-pêcheurs, des scientifiques. L'objectif de ces pêches scientifiques est d'évaluer l'état du peuplement au moment de la mise en protection (espèces présentes, densité, biomasse), afin de pouvoir évaluer, plus tard et au long terme, son effet sur les poissons juvéniles et peut-être aussi adultes.

Le peuplement de poissons est évalué à partir de la composition et de l'abondance des captures au sein de la zone mise en protection, mais aussi de part et d'autre. Les résultats d'un tel suivi ont pour objectif l'évaluation de l'efficacité de l'aire protégée d'abord pour le maintien des populations de poissons (protection des jeunes stades, mais aussi d'adultes en âge de se reproduire) et ensuite, en tant que soutien à la pêche artisanale locale. Le protocole mis en place a vocation à être reproduit au long terme pour déceler les changements au niveau des captures faites par les pêcheurs dans la zone ou par les scientifiques lors de pêches expérimentales à l'intérieur de la réserve. Le pas de temps préconisé à la suite de cet état initial est de 3 ans en respectant le même protocole d'échantillonnage.

3.1 Peuplement adulte : pêches scientifiques au filet

Trois campagnes de pêche ont été organisées en 2014 (hiver-mars, printemps-juin, été-septembre). Pour chacune, 3 jours de pêche successifs ont été effectués avec l'aide de deux pêcheurs professionnels de la zone (Daniel Deschampes des Saintes Maries de la Mer sur le MIRAGE II et Georges Gauzargues de Beauduc sur le TADORNE IV).

Des autorisations de pêche scientifique (autorisation de prélèvement par l'Arrêté N° 119 du 20 Février 2014) et d'embarquement sur les navires de pêche ont été sollicitées auprès des Affaires Maritimes par le PNR de Camargue. Avant la relève de chaque filet, il a été procédé (dans la mesure du possible) à la mesure de la température et de la salinité en surface et au fond. Ces mesures étaient destinées à caractériser globalement les conditions environnementales au moment des pêches (température, salinité) et d'éventuels évènements particuliers de type dessalure marquée des eaux pouvant avoir une influence sur la composition du peuplement (Annexe).

3.1.1 Echantillonnage au filet

Le protocole d'échantillonnage comprend 6 stations situées à une profondeur comprise entre -10 m et -11 m autour (stations F1 et F2 à l'Ouest; stations F5 et F6 à l'Est) et dans la réserve (station F3 et F4) (Fig. 1) (approche spatiale). Connaissant la forte variabilité saisonnières des conditions du milieu, 3 saisons de pêche ont été prévues (approche temporelle) avec une campagne d'hiver (début mars), une campagne de printemps (début juin) et une campagne d'été (début septembre). Ce plan d'échantillonnage a été validé le 27 juin 2013 par le Conseil Scientifique de la réserve. La méthode par pêche et le pas de temps envisagé pour le suivi sont inspirés de celle utilisée pour la mise en évidence de l'effet réserve dans la réserve du Cap Couronne (Parc marin de la Côte Bleue).

Pour que les captures soient comparables, des engins de pêche standardisés ont été utilisés parmi le panel d'engins qu'utilisent habituellement les pêcheurs de la zone. Leur activité est en effet extrêmement diversifiée selon les pratiques de chacun et la saison. Après une longue discussion avec les pêcheurs, les filets trémails de maille 50 mm (côté de la maille), en monofilament à 3 nappes, constitués de 5 pièces cousues entre elles, de 100 m de longueur et de 5.5 m de hauteur ont été choisis.

Les trois campagnes ont bénéficié de conditions météorologiques exceptionnellement bonnes et ont pu se dérouler en 4 jours : la campagne d'hiver du 10 au 13 mars, la campagne de printemps du 4 au 7 juin et la campagne d'été du 3 au 6 septembre 2014. La pose des filets était effectuée le premier jour entre 10:00 et 11:15 avec l'aide des pêcheurs et généralement entre 10:00 et 12:30 les jours suivants. La répartition des stations entre les pêcheurs s'est faite au départ en fonction de la proximité de leur port d'attache mais ensuite, un roulement a été fait entre les stations pêchées par chaque pêcheur afin d'éviter un biais systématique dû aux techniques de pêche propres à chacun (savoir-faire, connaissance du site, méthode de calée en particulier).

Les filets ont été calés pendant 24 h perpendiculairement à la côte (Fig. 3), le milieu du filet se trouvant sur le point de la station. La calée s'effectuait généralement en forme de 'S' de façon à créer des anses. Dans l'eau, ce type de filet lesté à sa base se positionne sur le fond, et est verticalement maintenu à l'aide de flotteurs. Chaque matin, les filets ont été relevés et les poissons ont été identifiés à l'espèce, pesés à 5 g près et mesurés en longueur totale et en longueur standard à l'aide de l'ichtyomètre. Les données issues des prises ont été répertoriées par pièces de filet (Jouvenel et al., 2004). Les coordonnées GPS ont été relevées au moment des calées et au moins au début et à la fin de chaque filet au moment de la levée et le plus souvent à chaque pièce. Le filet démaillé a été recalé de la même manière que la veille, légèrement en décalage de façon à ne pas pêcher au même endroit. La méthode a été répétée les 2 autres jours. A chaque campagne, la météorologie et l'état de la mer ont été notés.

L'unité statistique choisie pour les pêches au filet est la pièce de filet de 100 m, permettant des comparaisons dans le temps et éventuellement avec d'autres sites. En outre, l'abondance des espèces montre une différence significative entre les stations en considérant cette unité alors que l'unité filet ne donne pas de différences significatives entre les stations (test de Kruskal-Wallis, p= 0.033 pour la pièce et p= 0.482 pour le filet).

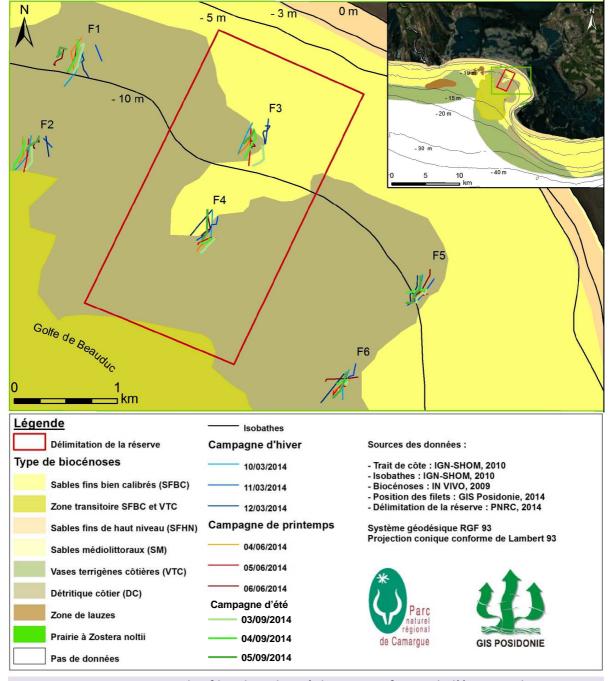


Figure 3 : Positionnement des filets lors des pêches scientifiques de l'état initial.

3.1.2 Analyse des données

Les données des pêches au filet concernant les poissons actinoptérygiens et chondrichtyens ont été restituées : (i) en richesse spécifique, (ii) en densité/100 m de filet, (iii) en biomasse/100 m de filet, (iv) en composition spécifique, (v) en classe de taille.

La richesse spécifique est le nombre d'espèces ou de taxons échantillonnés, elle a été restituée en fonction des saisons hiver, printemps et été. La densité et la biomasse ont été calculées par unité d'effort de 100 m de filet (CPUE). Lors des pêches expérimentales au filet, une grande partie des poissons a été attaquée ou consommée par des 'puces de mer' petits crustacés nécrophages, les vidant ainsi de leur chair. La biomasse de ces individus a été évaluée à partir de relations taille-masse. Pour les espèces les plus abondantes, les équations ont été construites à partir des échantillons sains, c'est le cas de la raie étoilée *Raja asterias*. Pour les espèces peu abondantes, ces équations ont été utilisées à partir des travaux de l'Ifremer (Dorel, 1986) et du site internet Fishbase (source : http://fishbase.org) (Tableau I). Ces équations ont été vérifiées et ajustées grâce aux individus sains d'une même espèce.

Tableau 1 : Relations taille-masse utilisées pour la correction de la biomasse des captures endommagées (L = longueur totale).

		T	
Espèces	Formule	Espèces	Formule
Scomber scombrus	0.00564*L ^{3.067405}	Solea senegalensis	0.00672*L ^{3.104}
Pagellus acarne	0.00856*L ^{3.13088}	Sola solea	0.004751*L ^{3.180774}
Pagellus erythrinus	0.0178*L ^{2.98}	Merluccius	0.00513*L ^{3.07400}
Sparus aurata	0.012074*L ^{3.046583}	Trachurus trachurus	0.01210*L ^{2.918}
Chelidonichthys	0.00670*L ^{3.078}		0.0102*L ^{3.02}
Chelidonichthys	0.00653*L ^{3.110}		0.0302*L ^{2.81}
Pegusa lascaris	0.00689*L ^{3.117}		0.00752*L ^{3.05}
Sardinella aurita	0.0043*L ^{3.120}	Boops boops	0.0078*L ^{3.10}

Le traitement des données des deux premières campagnes a fait l'objet du travail de Master de Julien Bonhomme. Les résultats de la troisième campagne ont été restitués de façon plus synthétique en développant moins les aspects statistiques. La normalité (test de Kolmogorov-Smirnov) et l'homogénéité des variances (test de Barlett) de l'ensemble des données des différentes métriques étudiées à partir des échantillonnages aux filets et au chalut à perche n'étant pas vérifiées, le test non paramètrique de Kruskal-Wallis a été utilisé pour mettre en évidence les différences éventuelles entre les stations. La médiane est utilisée plutôt que la moyenne afin de limiter l'effet des valeurs extrêmes. Le test non paramétrique de Mann-Whitney a été utilisé pour comparer l'abondance et la biomasse de deux stations entre elles. Le test du Chi² a été effectué afin d'observer les éventuelles différences dans la distribution des fréquences entre les stations. Le cas particulier de la biomasse en hiver où le test de normalité de Kolmogorov-Smirnov et d'homogénéité des variances est vérifié, une ANOVA a été réalisée. Les tests d'analyses des variances non paramétriques de Kruskal-Wallis et de Mann-Whitney ainsi que le test de Kolmogorov-Smirnov et l'ANOVA ont été effectués à partir du logiciel GraphPadPrism® et du logiciel Statistica[®].

La composition spécifique a été restituée en fonction des stations, en combinant les données d'hiver et de printemps afin de mieux mettre en évidence des différences selon la station. Les classes de tailles ont été représentées afin d'observer les différentes cohortes et la maturité de la population des espèces du golfe de Beauduc.

3.1.3 Richesse spécifique des captures

Au cours des campagnes d'hiver (début mars) et de printemps (début juin) 2014, un total de 51 espèces de poissons réparties dans 23 familles a été recensé dans le golfe de Beauduc à la fois au filet et au chalut à perche (Annexe 1). Deux espèces peuvent être ajoutées, *Mola mola* observé le mardi 3 juin 2014 lors de la campagne de chalutage et *Thunnus thynnus* observé comme prise accessoire au port des Saintes-Maries-de-la-Mer lors de la campagne d'hiver.

Au chalut, 16 espèces de poissons appartenant à 9 familles ont été récoltées.

Au filet, 22 espèces appartenant à 14 familles ont été observées lors de la campagne d'hiver, et 31 espèces représentant 16 familles lors de la campagne de printemps. Au printemps, 17 espèces de plus qu'en hiver ont été observées et 6 espèces présentes en hiver n'ont pas été retrouvées. Les espèces récoltées au filet (adultes) et au chalut (juvéniles) sont différentes. L'été, 28 espèces de poissons ont été capturées au filet trémail appartenant à

3.1.4 Biomasse des captures conservée et rejetée

Les poissons adultes capturés lors des campagnes de pêche expérimentale ne sont pas tous commercialisables : 57 % des individus capturés ne peuvent être commercialisés en raison de leur état (poisson abimé), des usages locaux (poisson non consommé par les communautés locales, par exemple *Alosa fallax, Torpedo torpedo*) ou des mesures légales (taille non réglementaire). Ces captures non commercialisables représentent environ 35 % de la biomasse totale des trois campagnes (ce pourcentage est obtenu à partir des biomasses calculées par les relations tailles-poids pour les poissons abimés). 43 % des individus pêchés sont donc potentiellement commercialisables (Fig. 4), représentant 65 % de la biomasse pêchée.

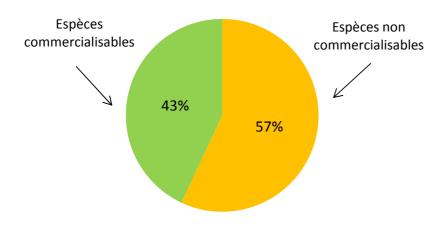


Figure 4 : Pourcentage d'espèces commercialisables et non commercialisables échantillonnées lors des campagnes de pêches expérimentales.

La proportion en nombre et le motif de la non-commercialisation de certains individus sont représentés sur la figure 5. La majorité (60 %) des rejets sont dus aux 'puces' (RP). Ces captures plus ou moins vidées de leur chair ne peuvent être commercialisées. Les espèces non commercialisées (RNC) telles que les raies torpilles *Torpedo torpedo* et T. marmorata où les aloses *Alosa fallax* représentent 28 % des individus rejetés parmi les espèces non commercialisables. Environ 10 % des captures non commercialisables sont dues à des juvéniles ou des poissons dont la taille est inférieure aux tailles légales de capture (RT), selon l'article 1er de l'Arrêté du 28 janvier 2013 déterminant la taille minimale de capture. Les poissons mangés ou mordus (RM) par d'autres espèces carnivores telles que les petits requins, les congres ou les poulpes représentent 1 à 2 % des espèces non commercialisables et les individus abimés (Abimé) par le filet, le treuil ou une raison indéterminée ne représentent que 0.4 %.

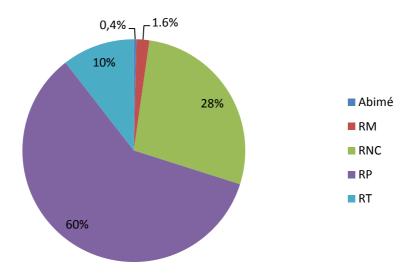


Figure 5 : Répartition des rejets de poissons prélevés lors des 3 campagnes de pêches expérimentales par catégories. Capture consommée par les 'puces' (petits crustacés) (RP) ; espèce non commercialisée (RNC) ; taille insuffisante (RT) ; capture consommée par d'autres poissons (RM) et poisson abimé pour tout autre motif.

3.1.5 Analyse saisonnière de la composition du peuplement adulte

3.1.5.1 Hiver

En hiver, 3 espèces sont majoritaires en nombre dans les captures des filets de maille 50 du golfe de Beauduc, il s'agit du maquereau commun *Scomber scombrus* avec 121 individus pêchés, de la raie étoilée *Raja asterias*, 100 individus pêchés et de la dorade royale *Sparus aurata*, 98 individus pêchés (Fig. 6). D'autres espèces à forte valeur commerciale ont été pêchées, comme *Merluccius merluccius* avec 22 individus pêchés et la famille des Soleidae avec *Solea solea* et *S. senegalensis* comptant respectivement 14 et 9 individus pêchés. Une espèce moins connue: *Dalophis imberbis* a été capturée. Cette espèce est caractéristique de ce type de fond sablo-vaseux dans lequel elle s'enfouit ne laissant dépasser que sa tête en attente d'une proie potentielle. L'alose *Alosa fallax* couramment capturée localement est une espèce protégée au niveau national et classée comme vulnérable sur la liste rouge des poissons d'eau douce de France métropolitaine (UICN France, 2010).

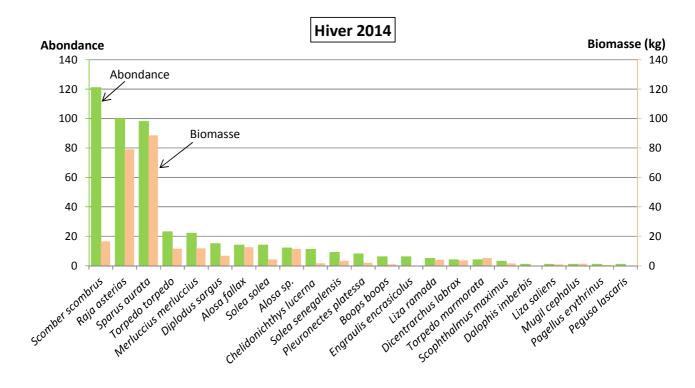


Figure 6 : Abondance (en vert) et biomasse (en rose) des différentes espèces de poissons pêchées lors de la campagne d'hiver.

En hiver, *Sparus aurata* et *Raja asterias* (Fig. 7) représentent l'essentiel de la biomasse pêchée avec 33 % et 29.5 % respectivement (Fig. 6). *Scomber scombrus*, espèce la plus pêchée en nombre, ne représente que 6 % de la biomasse totale pêchée durant cette campagne.

Figure 7 : Captures d'hiver au filet trémail.

3.1.5.2 *Printemps*

Au printemps, *S. scombrus* domine les captures dans le golfe de Beauduc, avec 102 individus pêchés en 3 jours de campagne (Fig. 8). Les espèces de la famille des Triglidae sont plus présentes dans la zone au printemps qu'en hiver. En effet, *Chelidonichthys obscurus* n'a pas été capturé en hiver alors que 55 individus ont été pêchés au printemps, ce qui correspond à la deuxième espèce la plus pêchée au printemps. Le nombre de *C. lucerna* a, quant à lui, presque triplé au printemps avec 29 individus capturés contre seulement 11 individus en hiver. La famille des Sparidae est la troisième famille la plus pêchée durant la campagne de printemps, elle est représentée par *S. aurata*, 53 individus capturés et le pageot *Pagellus acarne*, 43 individus. Toutefois, les dorades royales ont été moins pêchées durant cette campagne qu'en hiver. Les pageots sont uniquement capturés au printemps. Les soles *Solea solea*, *S. senegalensis*, *Pegusa impar* et *P. lascaris* sont plus présentes au printemps avec respectivement 36, 23, 18 et 3 individus capturés contre 14, 9, 0 et 1 en hiver. Les captures de raies *Raja asterias* ont été divisées par 2 au printemps avec 41 individus capturés contre 100 en hiver.

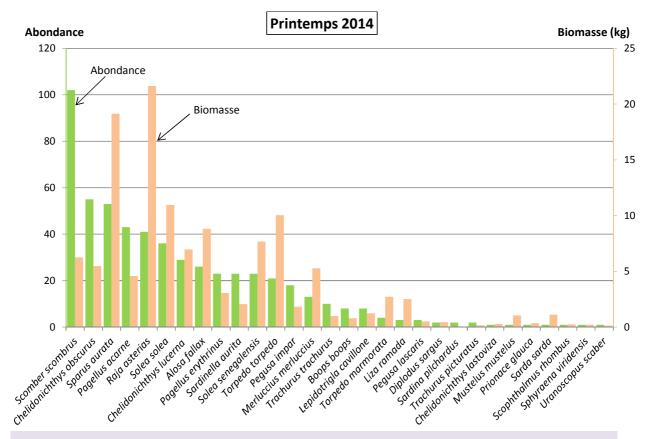


Figure 8 : Abondance (en vert) et biomasse (orange) des différentes espèces de poissons pêchées lors de la campagne de printemps.

Au printemps, des espèces rares de Chondrichtyens ont été pêchées, il s'agit de l'émissole lisse *Mustelus mustelus* et d'un juvénile de requin peau bleu *Prionace glauca* (Fig. 9) mesurant 54.5 cm pour un poids de 300 g. Un barracuda *Sphyraena viridensis* et une bonite *Sarda sarda* ont également été capturés.

Au printemps, les raies et les dorades royales représentent respectivement 18.4% et 16.3% de la biomasse totale. La sole *Solea solea* représente une part relativement importante de la biomasse pêchée au printemps avec 9.3% (Fig. 9). *Scomber scombrus*, espèce la plus abondante au printemps ne représente que 5.3% de la biomasse totale. A cette saison, les maquereaux pêchés sont au stade juvénile, leur taille et leur masse moyenne sont respectivement de 19 ± 4.6 cm et 61.8 ± 48.7 g.

Figure 9 : Echantillon de pêche au début du mois de juin (printemps). Requin peau-bleue *Prionace glauca* juvénile.

3.1.5.3 Eté

Les captures d'été, au début du mois de septembre étaient largement dominées par la raie Raja asterias et par les soles (S. senegalensis et S. solea) (Fig. 10). Le merlu Merluccius merluccius, la barbue Scophthalmus rhombus et le trigle Chelidonichthys lucerna viennent ensuite parmi les espèces les plus abondantes dans les 192 individus pêchés. Pour les sparidés, les pageots sont présents mais en abondance et en biomasse inférieures (4 fois) à celles du printemps. Les daurades ne sont pas encore présentes, mais feront l'objet d'une pêche spécifique fin septembre et en octobre. Les pêcheurs disent qu'ils ont bien pêché pendant l'été car des dorades sont restées près du bord du côté de Beauduc et les soles étaient bien capturées du côté des Saintes Maries de la Mer, mais peu de grondins et peu de maquereaux.

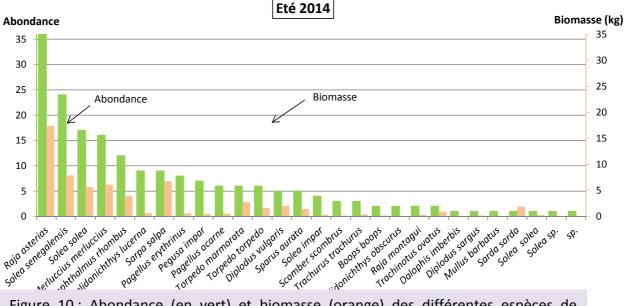


Figure 10 : Abondance (en vert) et biomasse (orange) des différentes espèces de poissons pêchées lors de la campagne d'été.

Figure 11: Les soles (à gauche) et les dorades (à droite) font partie des espèces caractéristiques des captures faites dans le golfe de Beauduc au mois de septembre (été).

Quelle que soit la saison, les raies et les poissons plats font partie des espèces dominant les captures réalisées au filet trémail autour de 10 m de profondeur.

3.1.6 Analyse spatiale du peuplement adulte

En hiver, les captures par unité d'effort (CPUE) exprimées en **densité** sont présentées sur la figure 12. L'unité d'effort est la pièce de filet de 100 m de longueur.

Les stations F2 et F6 présentent des abondances médianes de 8 et 7 individus respectivement. La station F1 a une abondance médiane de 1 individu capturé par pièce. Les stations F3, F4 et F5 ont des densités médianes de 5, 4 et 4 individus/pièce respectivement. Aucune différence significative entre les stations F1, F3, F4 et F5 n'est observée en ce qui concerne la densité par unité d'effort (test de Kruskal-Wallis, H = 5.231, p = 0.156). Les stations F2 et F6 présentent des différences significatives avec les autres stations (test de Kruskal-Wallis, H (5, n=90) = 23.01, p = 0.0003) mais ne présentent pas de différences entre elles (test de Mann-Whitney, U = 100.5, p = 0.632).

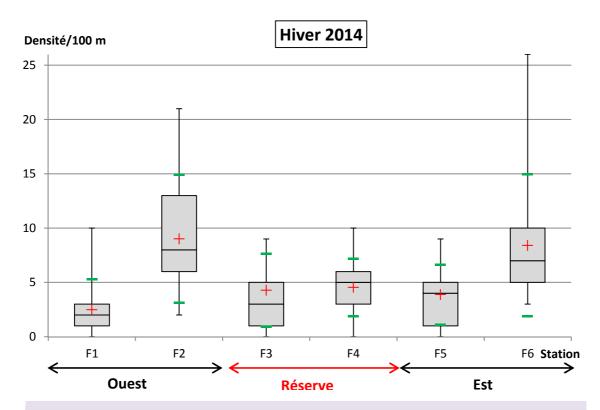


Figure 12 : Densité moyenne de poissons capturés pour 100 m de filet en fonction des stations lors de la campagne d'hiver. La croix rouge représente la moyenne et le trait vert l'écart type. Boxplot construit à partir de la médiane.

Au printemps, les densités par CPUE présentent moins de variations entre les stations. En effet, le nombre médian d'individus capturés est de 5 pour les stations F2, F3 et F6 et de 6 pour les stations F1, F4 et F5 (Fig. 13). L'analyse de variance de Kruskal-Wallis montre qu'il n'y a pas de différences significatives du nombre d'individus capturé par pièce entre les stations (test de Kruskal-Wallis H (5, n=90) = 0.389, p = 0.995).

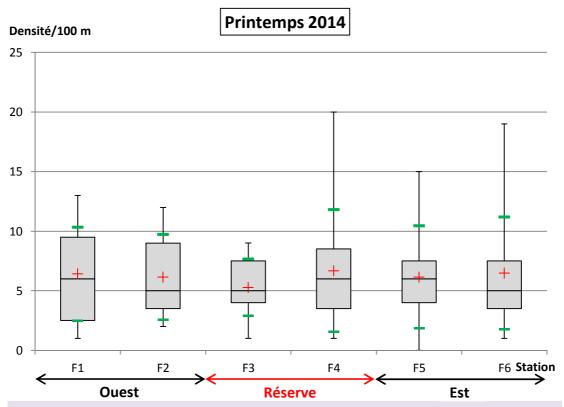


Figure 13 : Densité moyenne de poissons capturée pour 100 m de file selon les stations lors de la campagne de printemps. La croix rouge représente la moyenne et le trait vert l'écart type. Boxplot construit à partir de la médiane.

L'été, les densités de poissons dans les captures sont du même ordre de grandeur qu'au printemps (Fig. 14). Les stations 2 et 6 se distinguent par des densités de poissons plus élevées qu'aux autres stations comme en hiver. Le nombre d'individus capturés par pièce est significativement différent entre les stations (test de Kruskal-Wallis H (5, n=90) = 23.006, p = 0.000).

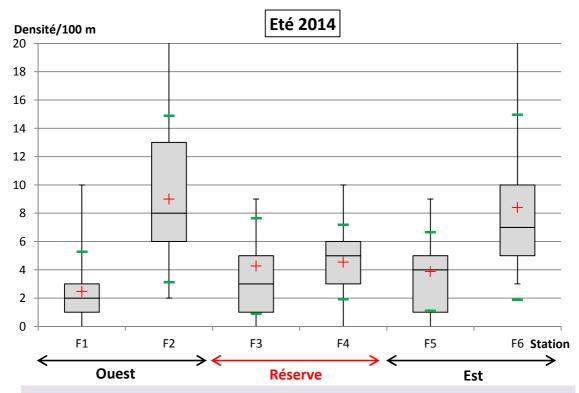


Figure 14 : Densité moyennes de poissons capturés pour 100 m de filet selon les stations lors de la campagne d'été. La croix rouge représente la moyenne et le trait vert l'écart type. Boxplot construit à partir de la médiane.

Les CPUE exprimées en **biomasse** par pièce de la campagne hivernale sont présentées à la figure 15. La biomasse médiane par unité d'effort est respectivement de 0.9 kg, 2.3 kg, 2.2 kg, 1.9 kg et 2.4 kg pour les stations F1, F3, F4, F5 et F6. La biomasse médiane la plus élevée est observée à la station F2 avec 4.6 kg par unité d'effort. La moyenne par unité à cette station est de 6.0 kg, la différence importante entre la médiane et la moyenne s'explique par le fait que le mercredi 13 mars une pièce a pêché exceptionnellement 13 kg de dorades royales. Le test de normalité de Kolmogorov-Smirnov montre que les biomasses des stations suivent une distribution normale d = 0.218, p = 0.053 et d = 0.206, p = 0.088 pour les stations F3 et F5 respectivement et p > 0.10 pour les stations F2, F4 et F6. Seule la station F1 ne suit pas une distribution normale (d = 0.291, p = 0.001). Les différences de biomasse par unité d'effort ne sont pas significatives entre les stations F1, F3, F4, F5 et F6 (test ANOVA, F = 0.65, p = 0.629), seule la station F2 est significativement différente. Cette différence s'explique par la capture exceptionnelle dans une pièce (pièce 4) de filet de 16 kg de poissons dont 13 kg de *Sparus aurata*.

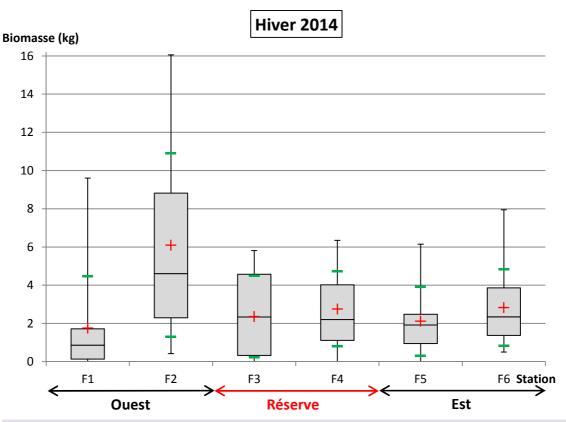


Figure 15 : CPUE exprimées en biomasse pour 100 m de filet des poissons en fonction des stations lors de la campagne d'hiver. La croix rouge représente la moyenne et le trait vert l'écart type. Boxplot construit à partir de la médiane.

Au printemps, la biomasse médiane par CPUE est respectivement de 1.4 kg, 1.1 kg, 1.4 kg, 1.2 kg et 1.4 kg pour les stations F1 à F6 (Fig. 16). Les biomasses par unité d'effort ne sont pas significativement différentes entre les stations (test de Kruskal-Wallis : H = 2.850, p = 0.723).

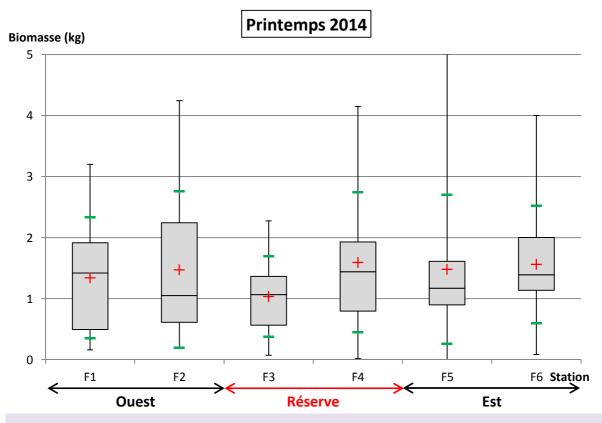


Figure 16 : CPUE exprimées en biomasse pour 100 m de filet des poissons en fonction des stations lors de la campagne de printemps. La croix rouge représente la moyenne et le trait vert l'écart type. Boxplot construit à partir de la médiane.

L'été, la biomasse médiane par CPUE est respectivement de 0.1 kg, 0.4 kg, 0.8 kg, 0.2 kg, 0.3 kg et 0.2 kg pour les stations F1 à F6 (Fig. 17). Les biomasses par unité d'effort ne sont pas significativement différentes entre les stations (test de Kruskal-Wallis : H = 2.850, p = 0.723).

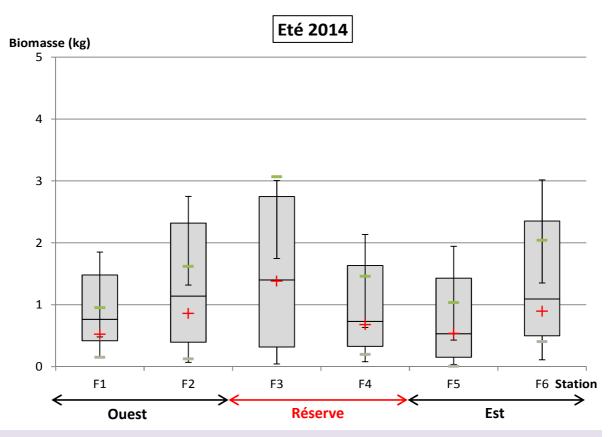


Figure 17 : CPUE exprimées en biomasse pour 100 m de filet des poissons en fonction des stations lors de la campagne d'été. La croix rouge représente la moyenne et le trait vert l'écart type. Boxplot construit à partir de la médiane.

Les rendements moyens (CPUE/100 m de filet) obtenus lors de ces pêches scientifiques sont de l'ordre de 3 kg en mars, 1.5 kg en juin et 0.5 à 1 kg début septembre.

Globalement, les captures faites au filet trémail dans le golfe de Beauduc (campagnes de mars, juin et septembre confondues) sont dominées en biomasse par la raie *Raja asterias*, la dorade *Sparus aurata* pour un tiers chacune et à part égale (5-6%) du merlu *Merluccius merluccius*, de la raie torpille (*Torpedo torpedo*, du maquereau *Scomber scombrus*, de l'alose *Alosa fallax* et des soles *Solea senegalensis* et *Solea solea*.

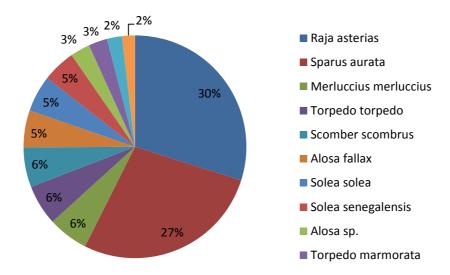


Figure 18 : Composition spécifique des captures en biomasse pour les 3 campagnes de pêche expérimentale au trémail dans le golfe de Beauduc (mars, juin, septembre 2014).

Dans les pêches expérimentales d'été, *Raja asterias* constitue toujours 1/3 des captures en biomasse (Fig. 19), mais *Solea senegalensis* devient la seconde espèce pêchée (13%) et la saupe *Sarpa salpa*, la troisième (12%). Le maquereau *Scomber scombrus* n'apparait plus parmi les espèces les plus pêchées, mais on rencontre du sar *Diplodus vulgaris* et de la bonite *Sarda sarda*.

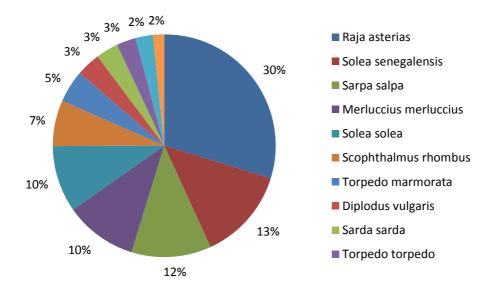


Figure 19 : Composition spécifique des captures en biomasse de la campagne d'été de pêche expérimentale au trémail dans le golfe de Beauduc (septembre 2014).

La **composition spécifique** à chaque station (campagnes d'hiver et de printemps confondues) est présentée à la figure 12. Le nombre d'espèces est similaire entre les stations F1, F2 et F6 avec respectivement 17, 16 et 16 espèces. Les stations F3, F4 et F5 ont un nombre d'espèces équivalent entre elles (respectivement 26, 27 et 28 espèces). La distribution des fréquences entre les stations est significativement différente (test du Chi², X-squared = 355.65, p < 0.0001). L'espèce *Sparus aurata*, est présente aux stations F1 (26 %), F2 (17 %) et F3 (15 %), elle est plus présente à l'Ouest et à la côte, qu'à l'Est au large. Cette espèce est présente sur toutes stations du golfe. *Scomber scombrus* est présent aux stations du large avec des effectifs de 30 %, 21 % et 20 % pour les stations F6, F2 et F4, respectivement. Elle est majoritaire à la station F1 avec 32 % des effectifs. *Raja asterias* est présente à toutes les stations dans des proportions assez semblables, sauf à la station F6 (pointe de Beauduc) où elle a peu été capturée, seulement 2 % contre 16 % en moyenne aux autres stations. *Alosa fallax* a été pêchée uniquement à l'Est de la réserve (stations F5 et F6) et au large de la réserve (station F4) où elle présente l'abondance la plus élevée.

Les différences dans la composition spécifique des captures observées confirment le caractère saisonnier de la pêcherie lié aux traits de vie des espèces. Ces différences de composition spécifique sont notées entre les stations situées plus près de la côte ou côté large et entre l'Est et l'Ouest (Fig. 20).

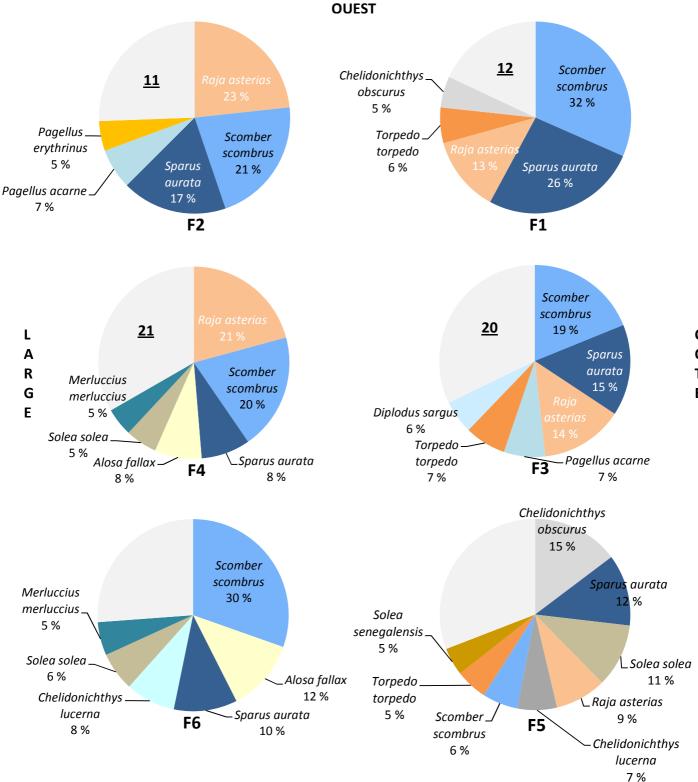


Figure 20 : Composition spécifique des différentes stations (campagnes d'hiver et de printemps confondues). Le chiffre souligné représente le nombre d'espèces dont les effectifs sont inférieurs à 5 %.

3.1.7 Structure de taille des espèces dominantes

Les espèces sélectionnées pour approfondir la structure de taille du peuplement présent sont les plus abondantes :

- → Scomber scombrus
- → Sparus aurata
- → Raja asterias
- → Alosa fallax

Les classes de taille (longueur totale : LT) des captures de Scomber scombrus sont présentées dans la figure 21. Durant la campagne d'hiver, les maquereaux pêchés appartiennent à une classe de taille adulte, comprise entre 22 cm et 28.5 cm avec une densité maximale entre 25 cm et 26 cm. Au printemps, cette classe de taille n'est plus observée. Les maquereaux capturés au printemps mesurent de 11.5 cm à 20.5 cm ou de 27.5 cm à 31 cm. La taille légale de capture du maquereau en méditerranée est de 18 cm. La L50¹ est de : 29 cm.

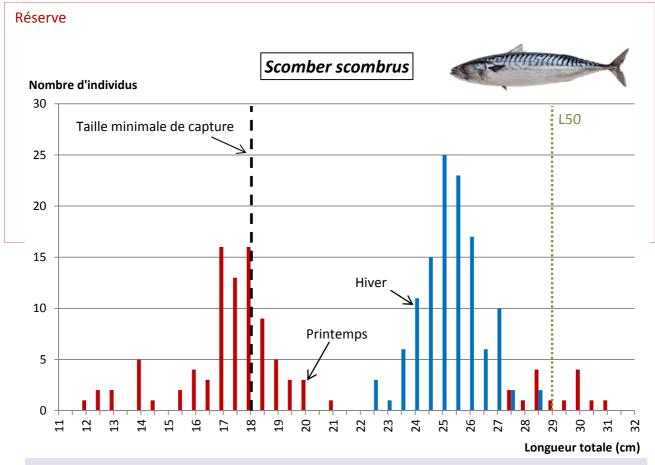


Figure 21: Distribution des tailles des maquereaux Scomber scombrus pêchés lors des campagnes d'hiver (bleu) et de printemps (rouge).

Taille à laquelle la moitié de la population s'est reproduite

Pour *Sparus aurata*, en hiver, les tailles de captures se situent entre 30 cm et 68 cm avec une forte concentration d'individus autour de la valeur 33 cm (Fig. 22). Au printemps, des dorades royales de taille inférieure sont capturées et mesurent de 18 cm à 21 cm (jeunes individus) ou de 26 cm à 39.5 cm (adultes).

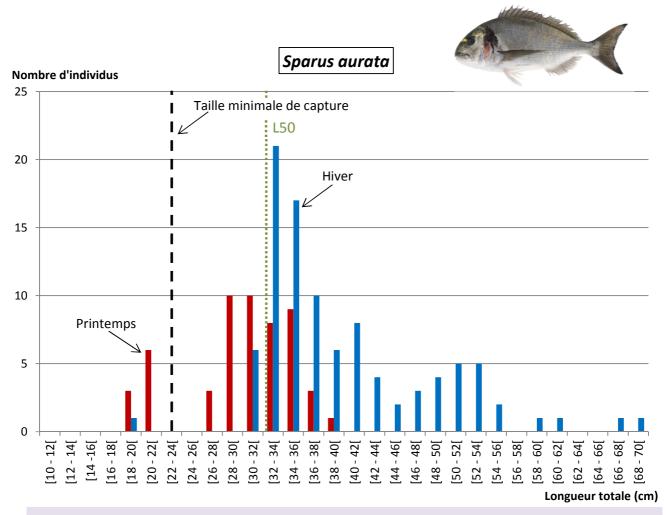


Figure 22 : Classes de taille des dorades royales *Sparus aurata* pêchées lors des campagnes d'hiver (bleu) et de printemps (rouge).

Pour *Raja asterias*, la différence entre l'hiver et le printemps au niveau des classes de tailles capturées est moins marquée que pour les deux espèces présentées précédemment (Fig. 23).

Toutefois, davantage d'individus de taille comprise entre 45 cm et 57.5 cm ont été pêchés en hiver. Au printemps, la majorité des individus capturés se situent dans la classe de taille inférieure comprise entre 36 cm et 46 cm. La taille pour laquelle la moitié des individus sont matures est de 47 cm pour les mâles et 50 cm pour les femelles. Cette espèce atteint sa maturité sexuelle très tardivement, à l'âge de 7 ans pour les mâles et 9 ans pour les femelles.

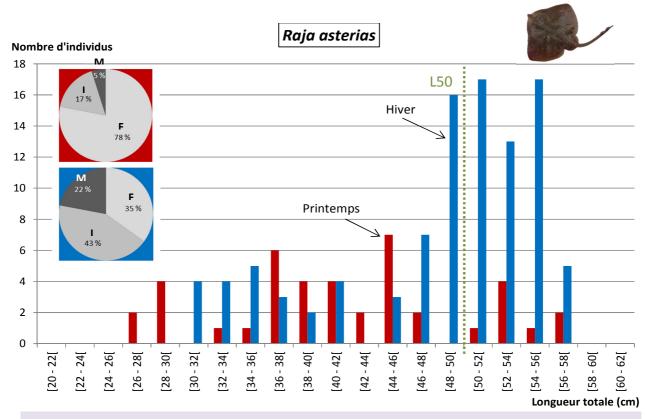


Figure 23 : Classe de taille des raies *Raja asterias* pêchées lors des 2 campagnes d'hiver (bleu) et de printemps (rouge). Les diagrammes en encart représentent la proportion de mâles (M), de femelles (F) et d'indéterminé (I).

Une différence de classe de taille est observée entre l'hiver et le printemps pour *Alosa fallax* (Fig. 24). En effet, en hiver les individus pêchés sont de grande taille comprise entre 37 cm et 46 cm alors qu'au printemps les individus capturés

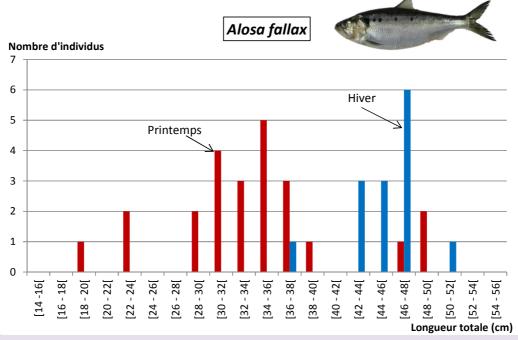


Figure 24 : Classe de taille des individus d'*Alosa fallax* pêchés lors des 2 campagnes d'hiver (bleu) et de printemps (rouge).

3.2 Peuplement juvénile : pêches scientifiques au petit chalut à perche

L'objectif de ces pêches expérimentales est d'appréhender l'état actuel de la nurserie du golfe de Beauduc notamment en ce qui concerne les poissons plats, et son évolution suite à la mise en place de l'aire marine protégée et à une éradication espérée du chalutage illégal (espèces présentes, répartition des classes de taille par zone et profondeur).

Les petits fonds littoraux sablonneux camarguais, et l'anse de Beauduc en particulier, sont connus depuis longtemps pour jouer un rôle primordial de nurserie de pleuronectiformes (soles, plies, turbot, etc.). Cette fonctionnalité a été atteinte par le passage répété des chalutiers qui perturbent les fonds et limitent ainsi l'abondance et la survie des juvéniles de poissons plats, qui alimentent la pêcherie.

Deux campagnes de suivi ont été programmées au printemps 2014 (juin) et au cours de l'hiver 2014-2015 (mars) afin de couvrir des périodes caractéristiques d'installation des juvéniles au cours de l'année. La technique la plus adéquate pour un échantillonnage efficace et le moins destructif possible est l'utilisation d'un petit chalut à perche de type crevettier utilisé au laboratoire.

3.2.1 Echantillonnage au chalut

L'échantillonnage au chalut à perche avait pour objectif de mieux connaître le peuplement de juvéniles du golfe de Beauduc, en complétant les inventaires et quantifications réalisés près du bord à la senne de plage entre 0 et 2 m de profondeur (Heloin, 2004, 2005).

L'engin de pêche utilisé est un petit chalut à perche expérimental qui emprunte des éléments du grand chalut à perche et du gangui, engins trainant utilisés sur les côtes provençales (Harmelin-Vivien, 1981). L'ouverture du chalut est de 0.5 m de hauteur sur 1.5 m de largeur, et la longueur du filet est de 5 m. Celui-ci est composé d'une maille de 10 mm dans sa partie antérieure et d'une maille de 8 mm dans sa partie terminale. Le même engin a été utilisé par Vacquier (2007) pour l'inventaire de la macrofaune benthique du golfe.

Les traits de chalut ont été effectués à l'aide du navire océanographique ANTEDON II de l'INSU-CNRS, les 2 et 3 juin 2014 pour la campagne d'été et le 23 et 24 mars 2015, pour la campagne d'hiver. Un total de 15 traicts de chalut ont été réalisés l'été et 18 traicts de chalut l'hiver, répartis sur cinq stations : 2 stations situées dans la réserve (station C3 et C5), une à l'Ouest (C2) et une à l'Est (C4) sur l'isobathe 10 m. La station C1 se situe à faible profondeur sur l'isobathe 5 m (Fig. 25).

Le temps de chalutage moyen de 15 min, a été ramené à 10 min pour le premier trait de chaque station et pour tous les traicts à la station C4 l'été 2014 à cause d'une surcharge du chalut en coquilles et débris divers. Le temps de chalutage était de 15 min et la vitesse de chalutage continue d'environ 2 nœuds (3.7 km.h-1). La surface échantillonnée a été calculée à partir des coordonnées GPS notées lors de la mise à l'eau et du relevage du chalut, à l'aide du logiciel ArcGis® et restituée par hectare (ha). Une mesure de température et de salinité était faite à 0 et 10 m avant chaque traict (annexe 3).

Lors de la remontée du chalut, les espèces de téléostéens ont été séparées et conservées au congélateur. Les espèces de macro-invertébrés ont été conservées dans l'alcool pour une détermination plus poussée au laboratoire.

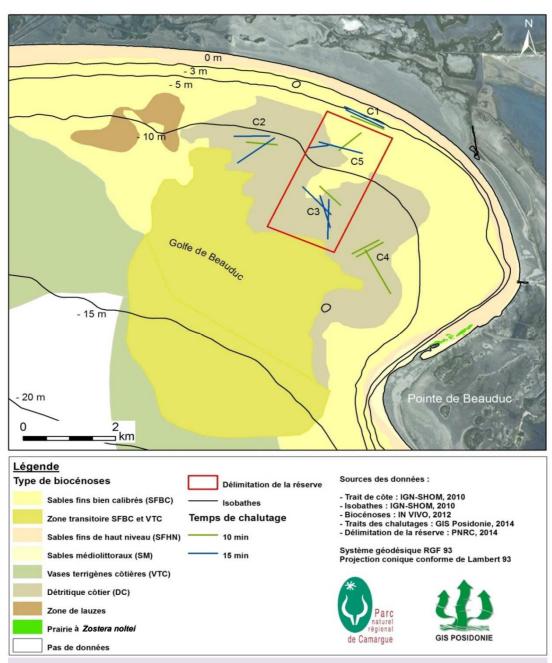


Figure 25 : Traits de chalut (3 par station sauf pour C3 où 4 traits ont été réalisés) effectués le 02/06/2014 et le 03/06/2014.

Les individus échantillonnés ont été identifiés au laboratoire jusqu'à l'espèce (sauf certains Gobiidae, identifiés jusqu'au genre, cas des Pomatoschistus) à partir des fiches FAO, des ouvrages de détermination (Bauchot et Pras, 1980) et avec l'aide de Mireille Harmelin-Vivien en juin (Directrice de recherche émérite au MIO - CNRS, Marseille). Les espèces ont ensuite été mesurées au millimètre afin d'observer les différentes classes de taille présentes. La

masse totale humide de toutes les espèces confondues a été mesurée au gramme près pour chaque trait de chalut.

Figure 26 : Echantillons de benthos récoltés à l'aide du chalut à perche en juin 2014.

3.2.2 Composition des captures en invertébrés

Les récoltes faites avec le chalut à perche se sont avérées très modestes en volume.

3.2.2.1 Densité

La densité d'invertébrés est similaire entre les stations et entre les deux périodes d'échantillonnage de juin 2014 et mars 2015 (2 – 3 individus pour 100 m²), excepté pour la station 4 en été (12 individus pour 100 m²). La différence entre les stations situées dans la réserve et celles hors de la réserve (2 et 4) est peu marquée.

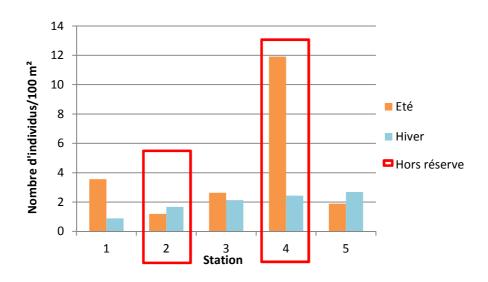


Figure 27 : Densité des invertébrés calculée en nombre d'individus/100 m² au sein des 5 stations échantillonnées pour les deux saisons (été : juillet 2014 et hiver : mars 2015).

3.2.2.2 Biomasse

La biomasse vivante et morte récoltée avec le chalut à perche est plus élevée en été qu'en hiver (multipliée au moins par 10). La biomasse est très variable en fonction des stations. La biomasse vivante la plus élevée a été trouvée dans la station 4 en été (212) et 5 en hiver (19.6). Dans la station 4, l'écart type est très élevé, cela provient de la forte variabilité des échantillons prélevés.

Tableau 2 : Biomasse vivante par station des invertébrés récoltés au chalut à perche dans le golfe de Beauduc (été : juin 2014 ; hiver : mars 2015).

	station	1	2	3	4	5
Eté	Biomasse vivante (en g)	46 ± 36.5	33,3 ± 30.3	37 ± 51.5	212 ± 242	10,7 ± 8.33
	Biomasse débris coquilliers (en g)	3,33 ±5.77	16,7 ± 15.5	30 ± 38.9	188 ± 165	4 ± 4
Hiver	Biomasse vivante (en g)	3.6 ±2.8	7.9 ±18.9	11.6 ±13.4	18.5 ± 21.2	19.6 ± 14.6
	Biomasse débris coquilliers (en g)	0.2 ± 0.5	0.9 ±1.2	4.2 ±5.6	25.9 ±20.7	1.1 ± 1.5

3.2.2.3 Diversité gamma

Dans le golfe de Beauduc un total de 82 espèces d'invertébrés appartenant à 50 familles a été trouvé dans les 2 campagnes d'échantillonnage (annexe 3). Le nombre d'espèces est moins élevé lors de la deuxième période, en hiver (39 par rapport à 73) Les mêmes espèces sont retrouvées aux deux périodes, seulement quelques espèces présentes en mars 2015 n'ont pas été trouvées lors de la campagne d'été 2014, comme *Crangon crangon* (crevette grise) et *Corystes cassivelanus* (crabe coryste) (Annexe).

Une espèce à valeur patrimoniale *Aporrhais pespelecani* (figure) qui avait déjà été trouvée dans le Golfe (2007) fait partie des espèces retrouvées sur le site lors des deux campagnes.

Tableau 3 : Richesse taxonomique obtenue pour l'ensemble des stations de chalutage dans le golfe de Beauduc aux deux périodes (été : juillet 2014 et hiver : mars 2015)

Saisons	Nombre d'espèces	Nombre de familles
Eté	73	48
Hiver	39	27
Total	82	50

Figure 28: Aporrhais pespelecani

3.2.2.4 Diversité spécifique

La richesse spécifique a été mesurée à l'échelle de chaque station (Tableau 4). Une valeur maximale de 35 et 27 espèces a été trouvée à la station 4 respectivement en été et hiver. La richesse totale qui oscille entre 10 et 20 espèces par station est élevée. Les stations 3 et 4 se démarquent par une richesse spécifique totale et moyenne plus importante en été (Rt : 29 et 35, Rm : 11 et 19). L'effet réserve n'est pas marqué quelle que soit la campagne. La richesse moyenne par hectare est similaire aux résultats obtenus par station.

Tableau 4 : Richesse spécifique à chaque station : richesse spécifique totale (Rt) , richesse spécifique moyenne (Rm) et richesse moyenne par hectare (Rrm/ha)obtenues à partir des trois échantillons réalisés par station ± écart type (Eté : juillet 2014 et hiver : mars 2015).

	Station	1	2	3	4	5
	Rt	10	15	29	35	11
Eté	Rm	7 ± 2	7 ± 2	11 ± 4	19 ± 3	6 ± 1
	Rm/ha	53	55	94	202	52
Hiver	Rt	8	18	17	27	19
пічеі	Rm	4 ± 2	7 ± 5	8 ± 6	11 ± 4	9 ± 7
	Rm/ha	29	50	55	81	62

Un test t de Student a été effectué pour tester la différence de nombre d'individus par espèces entre les stations (ces dernières suivant une loi normale). La station 4 se révèle significativement différente des stations 2, 3 et 4 en été. L'échantillonnage en hiver ne montre aucune différence entre les différentes stations. De même aucune différence significative entre le nombre d'individus par espèce n'a été obtenue entre la saison d'hiver et d'été pour chaque station.

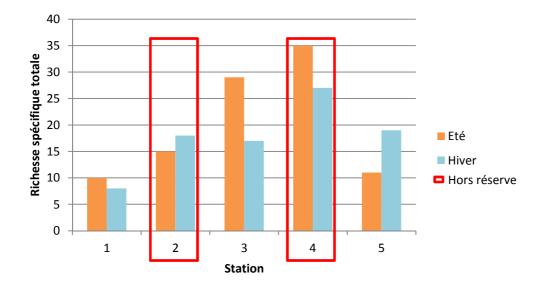


Figure 29: Richesses spécifiques par station (été: juillet 2014, hiver: mars 2015).

3.2.2.5 Abondance

5 phylums différents ont été recensés dans le golfe de Beauduc, la répartition des individus au sein de ces 5 catégories a été étudiée (annexe 4). Les arthropodes sont le phylum majoritaire pour les stations 1 et 2 quelle que soit la période d'échantillonnage (espèce dominante : *Macropodia sp.* en hiver, *Goneplax sp* en été). Il se retrouve aussi majoritaire sur la station 3 en hiver et 5 en été. Sur la station 1 la famille des Crangonidae représente l'espèce la plus abondante en tant qu'arthropode. Sur la station 4 le phylum dominant est les mollusques ; *Bolinus Brandaris, Aporrhais pespelecani et Turitella communis* sont les espèces les plus recensées. Les échinodermes sont fortement représentés par *Ophiura ophiura* sur le site 3 en été et 5 en hiver. Les annélides et les cnidaires sont les phylums les moins recensés sur les stations. Il y a une forte variabilité de chaque phylum entre les stations (5 à 55 pour les échinodermes, 3 à 139 pour les mollusques). Les phylums sont bien représentés sur la station 4 les maxima d'individus sont trouvés sur cette station.

Tableau 5 : Répartition des pourcentages par phylum selon les stations du golfe de Beauduc aux deux saisons (été :juillet 2014, hiver : mars 2015). En rouge phylum majoritaire de la station.

Station	1	l	2	2	3	3	4		ļ	5
Phylum	Eté	Hiver								
Annelida	0	3	2	2	3	0	1	1	3	3
Arthropoda	74	43	60	49	33	44	40	27	44	21
Cnidaria	1	3	9	0	1	1	0	1	0	0
Echinodermata	11	43	12	28	34	21	17	2	43	58
Mollusca	14	8	16	20	29	34	42	70	10	18

3.2.2.6 Synthèse des résultats concernant les invertébrés

Globalement les densités d'organismes observées sont faibles, parfois seulement quelques individus pour une surface d'échantillonnage de 100 m². La biomasse est très variable selon les stations et selon la période d'échantillonnage, elle reste, en général, inférieure en hiver. Les deux campagnes ont comptabilisé un total de 82 espèces appartenant à 50 familles. L'étude de Vacquier réalisée en 2007 avait recensé un total de 119 invertébrés en utilisant deux méthodes d'échantillonnage : la drague et le chalut. Le chalutage seul ne permet pas de représenter le phylum des annélides ou des espèces présentes dans le sédiment (endofaune) à de plus grande profondeur. Cependant la richesse totale mesurée lors des campagnes montre une richesse totale obtenue l'été 2007 similaire à celle de l'été 2014 (Tableau 6). Un effet de saisonnalité semble perceptible entre hiver et été, mais n'est pas statistiquement significatif.

Tableau 6 : Comparaison des données de l'état initial 2014-2015 aux données de Vacquier 2007.

	Printemps 2007	Eté 2007	Eté 2014	Hiver 2015
Nombre d'échantillons	12	12	16	18
RT	63	77	73	39

Les arthropodes sont le phylum majoritaire. Certains phylums ne sont représentés que par quelques espèces (*Macropodia sp., Goneplax sp.*). La richesse moyenne oscille entre 7 et 27 espèces par station.

Les stations sont similaires entre elles, il n'y a pas de différence entre les stations situées dans la réserve et les autres stations. Seule la station 4 étudiée en été se démarque des autres stations. En hiver, une densité faible ainsi qu'une diversité d'espèces faible ont été obtenues pour la station 1. Cette dernière est située près du rivage, en zone peu profonde. La crevette grise, *Crangon crangon*, est caractéristique de cette zone et effectue des migrations vers les eaux dessalées au printemps. Certaines espèces ne sont présentes que lors de l'une des deux saisons, ce qui peut s'expliquer par le déplacement saisonnier des espèces ou de durées de vie limitées à l'année.

3.2.3 Composition des captures en poissons

Lors des opérations de chalutage (15 traicts), 873 poissons ont été récolté en été (juin), correspondant à 16 espèces (appartenant à 9 familles) (annexe 5). En mars 2015 (18 traicts), seulement 66 poissons ont été récoltés, correspondant à 7 espèces (appartenant à 6 familles). Quelques individus adultes isolés ont été échantillonnés (sole, seiche) mais tout le reste des captures étaient des juvéniles.

Les pêches d'hiver (mars 2015) sont caractérisées par des abondances beaucoup plus faibles de poissons dans les récoltes, la dominance des poissons plats qui représentent près de 40% de la récolte et le petit nombre de gobies par rapport au printemps.

L'été, pour l'ensemble des 5 stations étudiées, la famille de Gobiidae est la plus représentée avec 65 % des individus capturés (Fig. 30), et compte une majorité d'individus juvéniles. Les pleuronectiformes représentent la deuxième catégorie dominant des poissons de petite taille avec principalement les juvéniles de Bothidae, *Arnoglossus laterna* (18 %), de Soleidae, *Buglossidium luteum* (6 %) et *Pegusa impar* (0.11 %). Le reste, constitué de différentes espèces représente 11 % des captures.

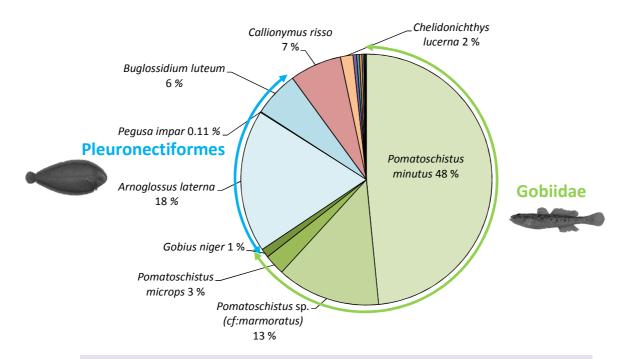


Figure 30 : Proportion des différentes espèces de juvéniles du golfe de Beauduc durant la campagne d'été. En vert : la famille des Gobiidae et en bleu : les poissons plats (pleuronectiformes.

L'hiver, 39% des individus récoltés étaient des gobies *Pomatoschistus minutus* et 24% des arnoglosses *Arnoglossus laterna enfin* 15% des poissons étaient des *Buglosidium luteum* (Fig. 31). Les autres espèces représentaient moins de 10% des captures : 9% de callionymes *Callionymus risso*, 9% d'anchois *Engraulis encrasicolus* alors que *Pomatoschistus microps*, et *Hippocampus quttulatus* représentaient 2 % chacune.

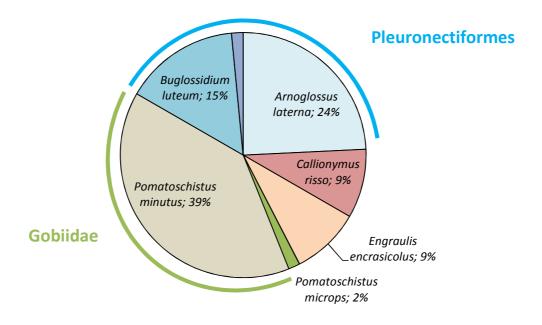


Figure 31 : Proportion des différentes espèces de juvéniles du golfe de Beauduc durant la campagne d'hiver. En vert : la famille des Gobiidae et en bleu : les poissons plats (pleuronectiformes.

3.2.4 Analyse spatiale du peuplement de poissons juvéniles

La densité d'individus est comprise entre 299 (\pm 87) et 848 (\pm 840) individus ha-1 (Tableau 7). Le nombre moyen de juvéniles le plus élevé est trouvé à la station C4 avec 848 individus ha-1. Cette valeur est due à la capture exceptionnelle de 145 Pomatoschistus minutus représentant 1460 individus ha-1 lors du troisième échantillon réalisé à la station C4. En excluant la famille des Gobiidae, qui représente près de $\frac{7}{3}$ des juvéniles, la densité d'individus est plus homogène entre les stations avec des valeurs comprises entre 120 (\pm 123) et 258 (\pm 143) individus ha-1.

Tableau 7 : Nombre moyen d'individus par hectare pour les 5 stations échantillonnées en juin 2014. Les écarts types sont indiqués entre parenthèses. Les stations en rouge correspondent à celle situées dans la réserve.

Station	C1	C2	C3	C4	C 5
Nb. moyen d'individus ha-1	299 (87)	365 (329)	563 (250)	848 (840)	577 (716)
Nb. moyen d'individus ha-1 sans Gobiidae	175 (51)	120 (123)	258 (143)	185 (104)	150 (96)

La composition spécifique est significativement différente entre les stations (test du Chi², X-squared = 300.2, p < 0.0001) (Fig. 32). Toutefois, les stations C2, C3 et C5 ne présentent pas de différences significatives entre elles, dans leur composition en espèces (test du Chi², X-squared = 22.14, p = 0.1387). Les stations C1 et C4 sont significativement différentes entre elles (test du Chi², X-squared = 92.55, p < 0.0001) et des autres stations.

A la station C1, les espèces dominantes sont *Callionymus risso* (114 individus ha-1) et Pomatoschistus microps (55 individus ha-1). Les espèces les plus représentées aux stations C2, C3 et C5 sont *Pomatoschistus minutus*, *Pomatoschistus sp.* et *Arnoglossus laterna*. La station C4 est essentiellement constituée par 2 espèces, *P. minutus* (609 individus ha-1, représentant 72 % de la composition spécifique) et *A. laterna* (109 individus ha-1, représentant 13 % de la composition spécifique). Les échantillons des stations C3 et C5, situées dans la réserve, ont des proportions similaires pour les espèces. *P. microps* n'est présent qu'à la station 1 au détriment de *P. minutus*, moins abondant qu'aux autres stations. Cette station peu profonde se caractérise par ⅓ des captures composées de Callionymidae. Les ¾ des poissons juvéniles capturés à l'Est de la réserve, à la station C4, sont des individus de *P. minutus*. A. laterna est la deuxième espèce la plus abondante à l'Est alors qu'à la station C2 située à l'Ouest de la réserve, ces 2 espèces et *P. marmorata* composent 80 % des captures.

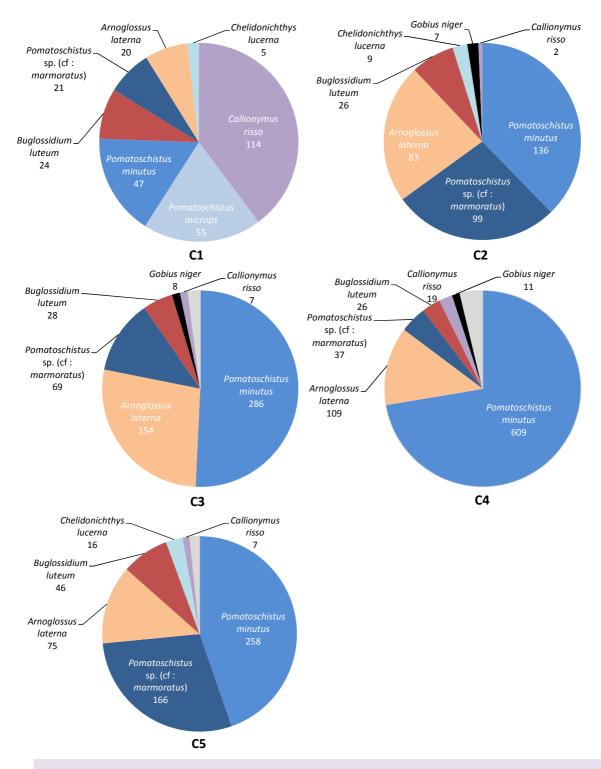


Figure 32 : Composition spécifique de l'abondance de poissons juvéniles aux différentes stations échantillonnées au chalut à perche en juin 2014.

Une analyse en composantes principales (ACP) a été effectuée sur les données d'abondances des juvéniles de poissons échantillonnés au chalut à perche en juin 2014. Les variables sont représentées par les espèces et les individus par les stations. Cette ACP a été réalisée à partir du logiciel Statistica®.

Dans l'analyse en composantes principales (ACP) de la figure 33, la représentation des stations dans l'espace des deux premiers axes sépare nettement les stations C2, C3 et C5 des stations C4 et C1 elles-mêmes séparées. 42.3 % de l'inertie est représentée sur le premier axe factoriel et 27.1 % sur le deuxième axe. Le premier axe est positivement relié à la nature du fond étant donné que les espèces contribuant le plus à sa construction sont affines à des substrats différents. Le deuxième axe est lié la profondeur. La station C1 est caractérisée par une profondeur de 5 m et une biocénose de sables fins bien calibrés (SFBC). Les stations C2, C3 et C5 sont situées à une profondeur de 10 m et sur du détritique côtier en transition avec le SFBC. Enfin, la station C4 est caractérisée par une profondeur de 10 m et une biocénose

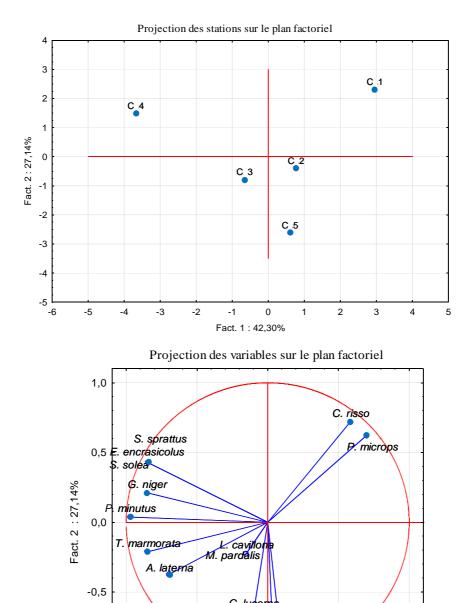


Figure 33 : Analyse en composantes principales de l'abondance de juvéniles de poissons échantillonnés au chalut à perche en juin 2014 dans 5 stations, selon l'axe factoriel 1 (42.3 %) et l'axe factoriel 2 (27.14 %).

0,0 Fact. 1:42,30%

-0,5

0,5

1,0

-1,0

-1,0

de détritique côtier mélangée à la vase, selon les observations du contenu du chalut. La projection des variables (espèces) sur le plan factoriel, confirme les différences de peuplement liées aux caractéristiques des stations. Les espèces comme *Pomatoschistus minutus* et *Arnoglossus laterna* sont caractéristiques des fonds vaseux observés à la station C4. *Callionymus risso* et *P. microps* trouvent des conditions favorables à de faibles profondeurs et sur un substrat plus sableux, rencontrées à la station C1. Les stations C2, C3 et C5 présentent un substrat du détritique côtier et une profondeur de -10 m, ces conditions sont favorables à *Buglossidium luteum*, *P. marmorata* et *Chelidonichthys lucerna*.

3.3 Discussion et conclusion

L'ichtyofaune du golfe de Beauduc a une valeur patrimoniale et commerciale importante en raison de la présence d'une espèce protégée, l'alose feinte *Alosa fallax*, de plusieurs espèces d'élasmobranches (requins, raies) et de celle de nombreuses espèces à forte valeur commerciale comme les Soleidés *Solea solea* et *S. senegalensis*, les sparidés *Sparus aurata* et *Pagellus sp.* (Héloin, 2004; Vacquier, 2007). La richesse spécifique de la zone confirme l'intérêt (écologique et économique) qui doit être porté à la gestion de cette aire marine dans l'objectif d'une préservation durable de ses ressources.

L'état zéro a permis d'établir une liste des différentes espèces de poissons fréquentes dans le golfe, de mars à septembre. La composition du peuplement diffère notablement de celui du peuplement échantillonné près du bord à la senne de plage par Heloin (2004) qui comportait une majorité de juvéniles et des espèces non récoltées en 2014-2015: Lithognathus mormyrus, Echiichthys vipera (petite vive), Solea theophilus (?), Lepidorhombus whiffiagonis (pleuronectiforme), Belone belone et Hemiramphus far, Atherina hepsetus et A. presbyter, Trachinotus glaucus (espèces pélagiques) enfin Gasterosteus aculeatus (espèce d'eau douce). Parmi les espèces particulièrement abondantes dans les captures à la senne de plage on pouvait noter: les athérines, le sar commun, Diplodus sargus, les muges, le rouget Mullus barbatus, les alevins de clupéidés, la sardine en particulier et le chinchard. Les juvéniles de poissons plats (sole, arnoglosse, barbue, turbot) n'étaient pas très abondants. Ces pêches à la senne avaient permis de confirmer le rôle de nurserie de la zone avec plus de 60% de juvéniles parmi les individus pêchés dont une forte proportion de juvéniles de chinchard et d'athérines, l'été. Au final, 36 espèces avaient été identifiées à la senne de plage, appartenant à 19 familles (29 pêches, 4892 individus) (Heloin, 2004).

Avec le même chalut que dans la présente étude, en avril et en juin, Vacquier et al. (2008) ont récolté 17 espèces, dont 5 dominantes : A. laterna, B. luteum, G. niger, P. minutus et C. risso. Au filet trémail et au chalut, en 2014-2015 : 52 espèces ont été récoltées appartenant à 24 familles. Au filet trémail 43 espèces totalisaient 1257 poissons capturés pesés et mesurés. Au chalut : 873 poissons ont été capturés en été (juin), appartenant à 16 espèces et 9 familles ; 67 poissons en hiver (mars), de 7 espèces appartenant à 6 familles. Globalement la composition spécifique des captures et la variabilité saisonnière observées sont caractéristiques des milieux lagunaires et de l'ichtyofaune déjà décrite dans le golfe sous influence marquée des eaux du Rhône. L'abondance de juvéniles de poissons plats est en accord avec les échantillonnages faits à Beauduc avec le même engin en 2007 par

Vacquier et al. (2008) et avec ceux faits dans l'anse de Carteau de 1983 à 1985 par Letourneur et al. (2001).

Parmi les elasmobranches, des requins ont été observées lors des embarquements avec les pêcheurs en particulier l'émissole lisse *Mustelus mustelus* et le requin peau bleue *Prionace glauca*. Un individu de 52 cm (presque nouveau-né) de cette dernière espèce, capturé en juin, a fait l'objet d'une dissection pour observer son contenu stomaccal (Biton Porsmoguer, comm. pers.). La présence assez fréquente, d'après les pêcheurs (prises accessoires), d'individus de si petite taille (la taille habituellement observée des nouveau-nés est de 40-50 cm d'après Moreno, 2004) démontre que la zone est une nurserie et que des femelles y mettent bas en mai-juin. Cette zone serait pour l'espèce un endroit protégé et permettrait aux nouveau-nés de s'y développer favorablement durant les premiers mois. Aussi bien les pêches au filet que celles au chalut ont confirmé la présence de juvéniles d'autres espèces pélagiques comme le maquereau, le chinchard ou la palomine et de juvéniles de pleuronectiformes.

3.3.1 Technique d'échantillonnage

Un certain nombre d'espèces recrutant près du bord (Riley et al., 1981; Morin et al., 1998) avaient déjà été échantillonnées à la senne de plage. Cependant la zone mise en protection située autour de l'isobathe des 10 m nécessitait l'emploi du chalut pour recenser les juvéniles présents. Pour capturer les jeunes individus de moins d'un an, il est nécessaire d'utiliser un maillage petit entrainant un risque de colmatage du chalut expérimental.

L'analyse des captures pièce par pièce de 100 m a permis de vérifier le caractère agrégatif ou le manque d'homogénéité dans la répartition des poissons dans les filets observés, ainsi qu'une différence significative entre les stations, en augmentant le nombre d'unités d'échantillonnage.

Les échantillonnages réalisés au filet et au chalut se sont avèrés complémentaires pour suivre la faune du golfe. Le démarrage du suivi et l'échantillonnage au filet trémail ont également favorisé l'échange et le travail avec les pêcheurs et amélioré la connaissance des activités de pêche artisanale locale.

3.3.2 Rejet des captures non commercialisables

La proportion de captures non commercialisables semble plus élevée dans le golfe de Beauduc que dans d'autres régions comme le Var ou la Corse (Bonhomme, 2013; Le Diréach, 2013). La présence de puces de mer très nombreuses, qui lors des calées s'attaquent au poisson pris dans le filet, explique une part importante des rejets par les pêcheurs lors des captures. De par sa situation géographique et son hydrodynamisme, le golfe de Beauduc semble regrouper les conditions favorables au développement de ces crustacés induisant des pertes directes aux pêcheurs. Le mode de consommation local explique une autre part importante des rejets; la soupe de poisson, qui permet de valoriser des espèces moins recherchées est moins consommée en Camargue que dans le Var, par exemple. Les poissons qui pourraient ainsi être vendus pour la soupe sont rejetés. Enfin, certains poissons pêchés en petit nombre ou ayant une faible valeur commerciale sont visiblement rejetés, les pêcheurs préférant valoriser les pêches d'espèces à forte demande

commerciale. La faible proportion de vente directe amplifie probablement ce phénomène car les poissons sont vendus presque exclusivement à la criée. Ainsi les embarquements réalisés dans le cadre des pêches expérimentales indiquent qu'il serait intéressant d'approfondir la question des rejets et de la valorisation des captures, dans le cadre d'un échantillonnage adapté et conséquent de la pêche artisanale (ce qui n'était pas l'objet de ce travail).

3.3.3 Caractéristiques du peuplement de poissons adultes

Les variations saisonnières des assemblages de poissons adultes du golfe de Beauduc, s'expliquent pour la majeure partie par le mode de vie des différentes espèces rencontrées. En hiver, le peuplement de poissons adultes est constitué majoritairement d'espèces pélagiques et démersales comme *Scomber scombrus*, *Sparus aurata* et *Merluccius merluccius* et de quelque espèces benthiques, essentiellement des raies telles que *Raja asterias* et *Torpedo torpedo*. Les dorades royales *Sparus aurata* ont des tailles supérieures à celles au printemps ce qui peut s'expliquer par le fait que les individus reproducteurs migrent d'Ouest en Est pour se reproduire dans les étangs de Thau et de Berre et passent par conséquent par le golfe de Beauduc. La taille de maturité sexuelle de la dorade royale est de 32.6 cm de longueur totale (Chaoui *et al.*, 2006). Cette taille correspond d'ailleurs à la majorité des dorades royales capturées en hiver. Lors des pêches de début septembre peu de dorades ont été capturées lors des échantillonnages dans le golfe alors que le pêcheur de Beauduc en pêchait plus au large.

La croissance des maquereaux *S. scombrus* est rapide dans les premiers stades de leur vie. Les jeunes maquereaux se nourrissent principalement de petits crustacés copépodes (Mendiola *et al.*, 2007; Trenkel *et al.*, 2014). En revanche, d'après la macrofaune d'invertébrés récoltée (Annexe), les arthropodes sont majoritairement rencontrés aux stations localisées le plus vers le large. Ceci peut donc expliquer leur plus grande fréquence en hiver aux stations du golfe situées du côté du large. Au printemps, les deux classes de taille observées (12 - 21 cm et 27.5 – 31.5 cm) correspondent, pour la première, aux individus nés dans l'année et pour la deuxième, aux individus âgés de 3 ans pouvant se reproduire, étant donné que la longueur pour laquelle 50 % des individus sont matures est de 29 cm (Clarke *et al.*, 2003). Cette reproduction s'effectue de mars à juin, suivant la température de l'eau. En hiver, les maquereaux pêchés appartiennent à une seule classe de taille (22.5 cm – 28.5 cm). Ces individus sont dans leur deuxième année de vie, ils correspondent à la première classe de taille d'été et sont encore immatures.

La taille de maturité sexuelle chez *Raja asterias* est atteinte à 51.7 cm chez les mâles et 56.1 cm chez les femelles (données sur les côtes italiennes; Serena *et al.*, 2005b; Barone *et al.*, 2007). Par contre cette taille est inférieure sur la côte Nord Atlantique marocaine avec des valeurs de 47.65 cm pour les mâles et 50.1 cm pour les femelles (Tai *et al.*, 2010). D'après ces chiffres, lors de la campagne de printemps, une très faible proportion des raies capturées avaient atteint leur maturité sexuelle, et seulement 35 % des raies capturées étaient matures en hiver. La même proportion de mâles et de femelles est retrouvée parmi les individus matures (longueur supérieure à 50 cm). La reproduction des raies s'effectue tout au long de l'année mais avec un pic en été (Tai *et al.*, 2010). La taille des raies échantillonnées montre que, le golfe de Beauduc serait davantage une zone de

grossissement qu'une zone de nurserie ou de reproduction. En effet, le régime alimentaire de cette espèce est constitué essentiellement de crustacés et de téléostéens, dont 60 % de Gobiidae (Romanelli *et al.*, 2007), ce qui correspond aux caractéristiques de la faune du golfe.

Les merlus *Merluccius* merluccius pêchés sont quasiment tous matures (taille : 31.5 cm à 54 cm). La taille de maturité sexuelle du merlu est en moyenne de 32.8 cm pour les mâles et de 45 cm pour les femelles ; l'âge correspondant à ces tailles est de 2.5 ans pour les mâles et 4.4 ans pour les femelles (Pineiro *et al.*, 2003). La taille minimale de capture de cette espèce est de 20 cm en Méditerranée (arrêté du 29 janvier 2013, déterminant la taille minimale ou la masse minimale de capture des poissons). Cette taille semble trop faible pour une préservation durable de l'espèce, d'autant que les différences de taille de maturité entre les mâles et les femelles accentuent cette observation. Des études plus approfondies sur le sujet pourraient être mises en œuvre pour une meilleure gestion de la ressource, en incluant également d'autres espèces comme les dorades royales qui présentent également des différences importantes entre taille minimale de capture et taille de maturité sexuelle.

3.3.4 Caractéristiques du peuplement de poissons juvéniles

En raison de sa localisation, de ses caractéristiques hydrologiques et écologiques et de sa faible profondeur, le golfe de Beauduc est une zone de nurserie remarquable pour de nombreuses espèces de juvéniles dont toutes ne présentent pas un intérêt commercial majeur. Les juvéniles de soles capturées au printemps à l'âge adulte (comme *Solea solea et S. senegalensis*) n'ont pas été récoltées dans les chalutages, ni en juin 2014, ni en mars 2015. L'installation sur le fond de ces espèces se fait de préférence dans la zone de 0 à 2 m sur le littoral sableux, souvent à proximité d'eaux dessalées (près de l'estuaire du Rhône et dans les étangs de Camargue) (Darnaude, 2003). Certaines années sont aussi plus favorables que d'autres et le recrutement peut être parfois carrément faible en fonction des crues du Rhône (Morat *et al.*, 2014). Quand elles deviennent adultes, les soles se répartissent alors sur le littoral sableux des côtes de Camargue. Les pleuronectiformes récoltés au stade juvénile tels que *Buglossidium luteum* et *Arnoglossus* sp. ont davantage d'affinités que les soles avec les fonds vaseux semblables à ceux du golfe.

Pour le peuplement de juvéniles, le facteur 'profondeur' et surtout le facteur 'nature du substrat' jouent une part importante dans la distribution des espèces. *Pomatoschistus minutus* est essentiellement rencontré à la station C4 (Est de la réserve) dont le substrat est très vaseux avec des débris coquilliers. Cette espèce vit préférentiellement en groupe, expliquant ainsi la variation rencontrée entre les 3 échantillonnages à cette même station, avec un trait représentant 1460 individus ha-1. *P. microps* est une espèce en compétition avec *P. minutus* au niveau ressource alimentaire, toutes deux sont des espèces annuelles en Méditerranée. *P. minutus* est sexuellement mature entre 7 mois et 1 an contre 4 à 8 mois pour *P. microps*, ce dernier est sédentaire et semble préférer les 10 premiers mètres et les sites recouverts d'herbiers ou d'algues alors que *P. minutus* est observé dans divers types d'habitats et considéré comme une espèce euryhaline et qui effectue des migrations génésiques (Pampoulie, 2001). La présence de *P. microps* à la station C1 (côte) peu profonde et sableuse peut s'expliquer par des conditions moins favorables à *P. minutus* qui préfère une profondeur plus élevée.

Les conditions observées aux stations C2, C3 et C5 sont favorables à *Buglossidium luteum* et celles à la station C4 sont plus favorables à *Arnoglossus laterna*. En effet, les juvéniles de ces 2 espèces sont préférentiellement rencontrés à des profondeurs de 10 à 40 m pour *B. luteum* et de 15 à 70 m pour *A. laterna* (Baltus *et al.*, 1995). La différence observée entre ces stations s'explique par le fait qu'*A. laterna* est davantage inféodée aux substrats vaseux que ne l'est *B. luteum*. Ces résultats corroborent ceux de Vacquier *et al.* (2008) qui montrent des assemblages différents entre la zone Est et la zone Ouest du golfe : la partie Ouest est dominée par *A. laterna* et *G. niger*, espèces plutôt inféodées aux fonds vaseux, tandis qu'à l'Est *B. luteum*, qui préfère les fond plus sableux, prédomine largement. Ces auteurs expliquent également les différences dans la structure des peuplements par la répartition de leurs proies sur les fonds (Letourneur *et al.*, 2001).

La densité moyenne par hectare des individus échantillonnés au chalut est de 530 individus ha⁻¹ en 2014. Cette valeur est plus faible mais du même ordre de grandeur que celle obtenue par Vacquier en 2007 (602 individus ha⁻¹) et celle évaluée par Letourneur en 2001 dans le golfe de Fos (France) (650 individus ha⁻¹). Les petites variations de densité de poissons entre ces 3 années pourraient être liées à des différences de débit du Rhône, apportant plus ou moins de matières organiques pour les populations d'invertébrés benthiques (Letourneur *et al.*, 2001).

La composition spécifique des assemblages de juvéniles échantillonnés au chalut est complètement différente de celle des assemblages de poissons adultes capturés au filet et la composition spécifique des captures varie fortement selon les saisons. Cela s'explique par la différence de répartition en profondeur des juvéniles et des adultes des différentes espèces, qui est l'une des caractéristiques de leurs traits de vie. La reproduction de la sole, par exemple, a lieu en mer généralement autour des isobathes 30 à 50 m, à des périodes variables selon les régions (Cabral, 2003), mais généralement de janvier à mars. Les larves se développent rapidement et les jeunes migrent alors vers la côte et les milieux dessalés où ils séjournent pendant deux ans (Gilliers et al., 2004; Lagardère et al., 1999).

La quantité de gobies récoltés en juin et la variété des invertébrés montrent que le golfe contribue aussi à l'alimentation des adultes d'espèces pélagiques et démersales qui présentent, une forte valeur commerciale. Ces espèces viennent probablement pour se nourrir et ne se reproduisent pas dans le golfe mais en profondeur. Le cas particulier de l'alose feinte *Alosa fallax*, est que pour se reproduire, elle entame une migration anadrome vers le Rhône, au printemps qui dure 3 ans (Le Corre *et al.*, 1997 ; Guillard *et al.*, 2000). Les juvéniles d'aloses grandissent dans les eaux du Rhône et dans les étangs du delta, notamment l'étang du Vaccarès (Crivelli *et al.*, 2001). Ils finissent ensuite leur migration en mer où ils terminent leur phase de croissance (Baglinière *et al.*, 2000).

4 Suivi de la colonisation de récifs artificiels à juvéniles (DNAP)

Conjointement à la mise en place de l'aire marine protégée et en réponse à une demande des pêcheurs de favoriser les espèces démersales locales, le PNR de Camargue a prévu d'immerger, à titre expérimental, un certain nombre de récifs artificiels destinés à favoriser les juvéniles de poissons d'espèces démersales (sar, loup). Un suivi avant la mise en place et une caractérisation de la colonisation de ces structures ont donc été engagés dans le contexte de la zone d'étude : aire marine protégée sur côte sableuse et nurserie côtière.

4.1 Peuplement juvéniles : comptages visuels

Une des techniques d'échantillonnage les plus adaptées à la mise en évidence de l'efficacité de récifs est le comptage visuel en plongée sous-marine. Une première campagne de recensement visuel était prévue dans la zone avant l'immersion des nurseries artificielles. Les résultats de cette campagne réalisée en juillet 2014 ont ainsi complété les données des pêches expérimentales par l'observation directe d'autres espèces en plongée. Cette campagne avait pour objectif de réaliser un état zéro avant la modification des mesures de gestion et avant tout aménagement. Dans chacune des 4 à 6 stations, une série de transects de 60 m de longueur ont été parcourus en plongée sous-marine. En raison des conditions de visibilité probablement réduites, le peuplement de poissons a été recensé sur une largeur d'1 m de part et d'autre du transect. Entre 3 et 6 transects ont été suivis à chaque station.

Une seconde campagne a été organisée en octobre 2014 pour réaliser un premier suivi du peuplement à la suite de la mise en place du dispositif de récifs artificiels. L'unité d'échantillonnage était cette fois le module (volume de 2 à 2.8 m³), quel que soit sa structure. Un comptage a donc été réalisé sur les différents modules répartis sur plusieurs stations (communes avec celles de l'état zéro).

Les principales contraintes du suivi se sont avérées être la turbidité des eaux camarguaises.

Le PNR de Camargue a fourni les moyens à la mer pour ce suivi (semi-rigide, son armement et un pilote). Trois plongeurs biologistes du GIS Posidonie ont été mobilisés dans le cadre de suivi.

4.1.1 Plan des dispositifs

Les deux villages Z1 et Z2 sont positionnés respectivement au sein de la réserve de Beauduc, respectivement à proximité de la balise Nord-Ouest et de la balise Nord-Est. Les 2 villages se situent à environ 7 m de profondeur.

Le village de la zone 1 - Z1 (Figure 34) est de forme linéaire alors que le village de la zone 2 - Z2 est circulaire (Figure 35). Chaque village est composé d'un assemblage de plusieurs modules : 2 Pyramides, 2 Sargasses, 6 Pods, 3 récifs tabulaires et 3 récifs trophiques et comporte le même nombre de modules, soit 16 par village (32 au total).

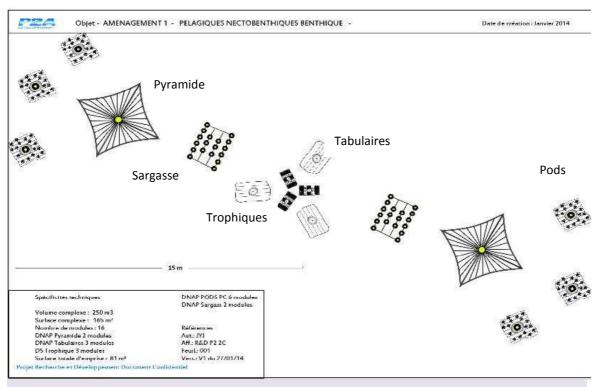


Figure 34 : Schéma représentant l'assemblage de la zone 1 (NW) dont les modules de récifs sont disposés en ligne.

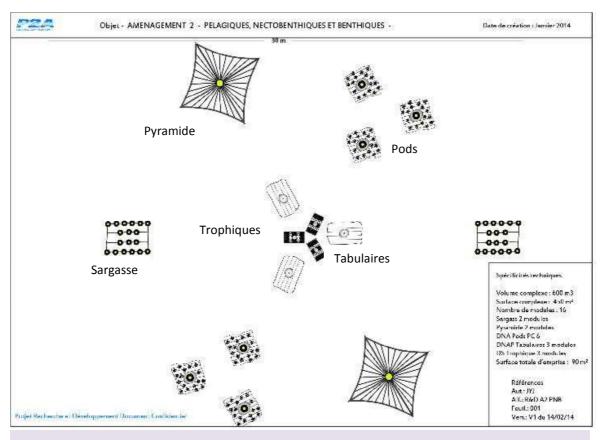


Figure 35 : Schéma représentant l'assemblage de la zone 2 (NE) dont les modules de récifs sont disposés en cercle.

4.1.2 Protocole d'échantillonnage

Le comptage a ciblé le peuplement de téléostéens juvéniles, les adultes, plus difficiles à dénombrer précisément dans les conditions de visibilité de la zone d'étude, ont tout de même été considérés à titre indicatif. Deux palanquées de 2 plongeurs se répartissent les structures de façon équilibrée au sein d'un village. Le parcours de chaque palanquée est fait en sorte de ne pas gêner l'autre. Le comptage de l'ensemble du peuplement de poissons est réalisé par les deux compteurs d'une palanquée.

Lors du comptage, l'espèce (ou le niveau d'identification le plus précis possible), l'abondance et la taille (au demi-cm près jusqu'à 4 cm LT (Longueur totale), au cm près jusqu'à 10 cm LT puis à 2 cm près au-delà) sont notées. Les deux observateurs de la palanquée comparent ensuite leurs comptages, enlèvent les doublons et rajoutent les individus non vus par un des observateurs. Cette technique permet d'obtenir une plus grande exhaustivité du comptage.

4.1.3 Déroulement des opérations

Les deux villages de récifs artificiels ont été inspectés à deux reprises, le 3 octobre 2014 et le 25 juin 2015. La visibilité horizontale était de l'ordre de 1.5 m en octobre 2014 contre plus de 5 m en juin 2015.

Avant la mise en place des nurseries artificiels, un comptage référence 'état zéro a été réalisé le 15/07/2014. Dans le même secteur que celui des villages Z1 et Z2, respectivement 25 et 20 réplicats correspondant à des transects de 10 m x 1 m ont été parcourus par un observateur. Le peuplement de poissons et d'invertébrés vagiles a été dénombré.

4.2 Résultats des comptages et de l'observation des DNAP

4.2.1 Richesse spécifique

Un total de 28 taxons a été recensé au cours des deux campagnes de comptages sur les DNAP, 13 en octobre 2014 et 23 en juin 2015. Parmi ces taxons, il y a 1 crustacé décapode (*Scyllarus arctus*), deux céphalopodes (*Octopus vulgaris* et *Sepia officinalis*) et 25 téléostéens. En ne considérant que les juvéniles, 20 taxons ont été rencontrés, 8 en octobre 2014 et 16 en juin 2015 (Fig.36).

Lors du comptage sur sable avant la mise en place des modules, 7 taxons ont été dénombrés, 5 correspondant à des adultes et 6 correspondant à des juvéniles. Parmi ces taxons, il y avait 2 céphalopodes (*S. officinalis* et *Sepiola* sp.) et 5 téléostéens.

Les taxons juvéniles les plus présents sont les gobies *Pomatoschistus* sp., les pageots *Pagellus* sp., le serran chevrette *Serranus cabrilla* et les rougets *Mullus* spp. (Tableau 8).

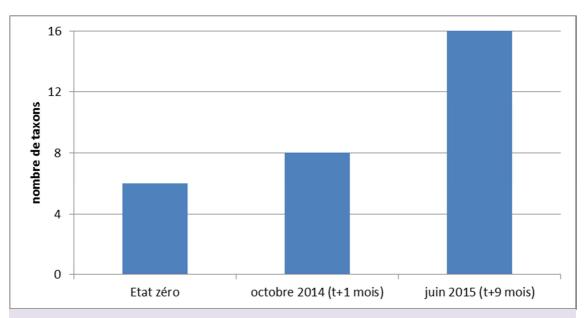


Figure 36 : Nombre de taxons juvéniles rencontrés lors de l'état zéro (avant l'immersion des DNAP, juillet 2014), 1 mois après l'immersion (octobre 2014) et 9 mois après l'immersion (juin 2014). Schéma représentant l'assemblage de la zone 2 (NE) dont les modules de récifs sont disposés en cercle.

Tableau 8. Synthèse des abondances de poissons et invertébrés mobiles (juvéniles et adultes) par taxons au cours des comptages pour l'état zéro, octobre 2014 et juin 2015.

,				J	uvéniles	;								Adultes					
Campagne	Etat zé	ro juillet	t 2014		oct-14			juin-15		Etat zé	ro juillet	2014		oct-14			juin-15		Total général
Taxons	Zone1	Zone2	Total	Zone1	Zone2	Total	Zone1	Zone2	Total	Zone1	Zone2	Total	Zone1	Zone2	Total	Zone1	Zone2	Total	
Arnoglossus sp.	2	2	4																4
Balistes capriscus																	1	1	1
Blenniidae				1	2	3				1	3	4							7
Callionymus sp.	2	12	14				1		1					2	2				17
Conger conger													2		2	7	13	20	22
Dalophis imberbis														2	2				2
Dicentrarchus labrax																4	23	27	27
Diplodus annularis					2	2		1	1										3
Diplodus sargus					1	1	1		1				1	1	2	5	2	7	11
Diplodus vulgaris							4		4										4
Epinephelus marginatus					1	1	1		1										2
Gobiidae	5	5	10				20	8	28	1		1							39
Gobius niger																1		1	1
juvénile indéterminé								8	8										8
Mullus barbatus				4	7	11				9		9	3	18	21				41
Mullus surmuletus								28	28					13	13				41
Oblada melanura							7	10	17										17
Octopus vulgaris													2		2		1	1	3
Pagellus sp.								52	52										52
Parablennius gattorugine				1		1													1
Parablennius pilicornis								1	1							4	5	9	10
Parablennius rouxi							1		1										1
Phycis phycis																	1	1	1
Pomatoschistus sp.							49	28	77							16	16	32	109
Scyllarus arctus							1		1										1
Sepia officinalis	1	1	2	1		1	1		1	2		2		1	1				7
Sepiola sp.	3	4	7																7
Solea sp.	1	3	4							1		1							5
Serranus cabrilla				18	24	42										1	1	2	44
Sparus aurata																1	1	2	2
Trachurus mediterraneus								1	1										1
Total	14	27	41	25	37	62	86	137	223	14	3	17	8	37	45	39	64	103	491

4.2.2 Densité

Lors de la deuxième campagne (juin 2015), la densité de poissons adultes est nettement plus importante, passant de 1.4 individu par récif en octobre 2014 à 3.2 en juin 2015. Concernant les juvéniles, la densité est également plus grande en juin 2015 par rapport à octobre 2014, passant de 1.9 à 7.0 individus par récif (Fig. 37).

Lors de l'état zéro, la densité était, toutes zones confondues, de 1.3 individus pour 10 m². La surface unitaire des transects peut être considérée comme proche de la surface sous influence d'un récif à juvéniles, tout du moins du même ordre de grandeur. Ce résultat laisse donc penser à une augmentation de la densité de poissons depuis la mise en place des DNAP.

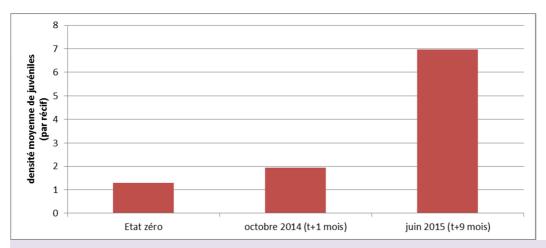


Figure 37: Densité moyenne par récif (sauf pour l'état zéro ou la densité est exprimée par 10 m²) de juvéniles rencontrés lors de l'état zéro (avant l'immersion des DNAP, juillet 2014), 1 mois après l'immersion (octobre 2014) et 9 mois après l'immersion (juin 2014).

Le peuplement de poissons, en particulier de juvéniles, est, à ce stade de l'étude, assez homogène entre les modules. Six des 20 taxons rencontrés sont observés sur au moins 3 des 5 types de module. Le constat est le même pour les adultes, en particulier pour les loups et les congres, où 6 des 14 taxons rencontrés sont observés sur au moins 3 types de module (Tableau 9).

Tableau 9. Synthèse des abondances totales d'adultes (A) et de juvéniles (J) par type de module.

	PC	DD	ΡY	/R	SA	AR	T/	λB	TF	RO	Total gánáral
Taxons	Α	J	Α	J	Α	J	Α	J	Α	J	Total général
Balistes capriscus							1				1
Blenniidae		1				1		1			3
Callionymus sp.			2	1							3
Conger conger	11				3		5		3		22
Dalophis imberbis			1				1				2
Dicentrarchus labrax	5		2		7		11		2		27
Diplodus annularis						3					3
Diplodus sargus	3		1			1		1	5		11
Diplodus vulgaris								2		2	4
Epinephelus marginatus								1		1	2
Gobiidae		8								20	28
Gobius niger							1				1
juvénile indéterminé						8					8
Mullus barbatus	3	1	16	3	2	7					32
Mullus surmuletus		12	13	1				14		1	41
Oblada melanura		5		5		6		1			17
Octopus vulgaris	1						1		1		3
Pagellus sp.		12						20		20	52
Parablennius gattorugine						1					1
Parablennius pilicornis	2	1					4		3		10
Parablennius rouxi				1							1
Phycis phycis									1		1
Pomatoschistus sp.		23			16	24	16	29		1	109
Scyllarus arctus						1					1
Sepia officinalis			1	1				1			3
Serranus cabrilla	1	11		4	1	9		8		10	44
Sparus aurata	1						1				2
Trachurus mediterraneus		1									1
Total général	27	75	36	16	29	61	41	78	15	55	433

La plus forte densité d'adultes mais aussi de juvéniles est observée sur les récifs de type Sargasse, suivi des récifs tabulaires. Les Pods et les trophiques abritent des densités intermédiaires et les récifs pyramides, bien qu'abritant une densité d'adultes supérieure à 5 individus par récifs, abritent la plus faible densité de juvéniles (37). Cependant, l'écart type est très grand pour chaque module, relativisant la comparaison.

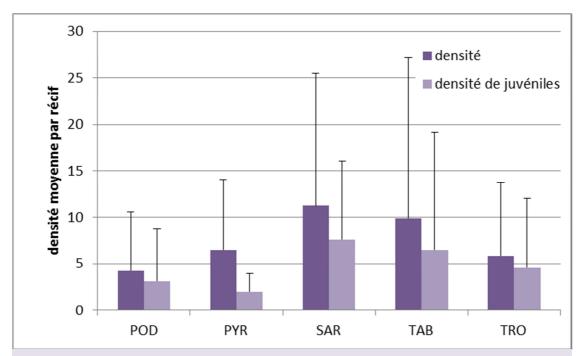


Figure 38 : Densité moyenne par récif observée par type de module (POD : Pod, PYR : Pyramide ; SAR : Sargasse, TAB : Tabulaire, TRO : trophique) du peuplement total et des juvéniles.

L'analyse de la biomasse des adultes, à titre indicatif, montre des valeurs importantes, comprises entre 0.2 kg (récif Pyramide) et 3.3 kg par récif (récif Pod).

4.3 Etat de colonisation des DNAP

Voici ci-dessous quelques illustrations des DNAP et du peuplement observé.

Un récif Pods (octobre 2014).

Un serran chevrette *Serranus cabrilla* sur un récif tabulaire (octobre 2014).

Sommet d'un récif Pyramide (juin 2015).

Récif Sargasse (juin 2015).

Mérou brun Epinephelus marginatus sur un récif Tabulaire (juin 2015).

Une mostelle *Phycis phycis* utilisant un récif trophique comme abri (juin 2015).

Congre Conger conger sous un récif Pods (juin 2015).

4.4 Discussion

En particulier lors de la campagne de juin 2015, nous avons observé une forte densité d'adultes, représentant une biomasse importante (congres, loups). Il est légitime de se poser la question de l'incidence d'une telle densité d'ichtyophages sur les assemblages de juvéniles. La biomasse de téléostéens adultes observée sur les DNAP, en particulier en juin 2015, est comparable voire supérieure à celle que l'on peut observer dans de nombreuses concessions de récifs artificiels de production (Astruch *et al.*, 2013 ; Le Diréach *et al.*, 2010, 2014). Bien que ce résultat ne corresponde pas aux objectifs initiaux des DNAP, il démontre

le fort potentiel de la zone d'étude pour la mise en place de récifs artificiels de production. La mise en place d'habitats de substrat dur pour les adultes (abri et nourriture), dont de grands géniteurs (cas des loups) peut aussi favoriser leur reproduction dans la zone.

Au cours des deux campagnes (octobre 2014 et juin 2015, un mérou brun *Epinephelus marginatus* a été vu, d'abord sur un récif trophique de la zone 2 (octobre 2014, 4 cm LT) puis sur un récif tabulaire de la zone 1 (juin 2015, 10 cm LT). Les deux zones sont espacées de 1.4 km; peut-on considérer qu'il s'agisse du même individu qui aurait circulé entre les deux zones ? ou bien y a-t-il plusieurs individus dans la zone ? Au cours de l'été 2014, les conditions ont été favorables à la reproduction des mérous bruns, des occurrences exceptionnelles de post-larves et de juvéniles de mérou brun ont été observées en Méditerranée française continentale (Languedoc-Roussillon et PACA; GEM *comm. pers.*, ECOCEAN *comm. pers.*). Cette observation dans la réserve de l'anse de Beauduc est exceptionnelle, elle est liée à une combinaison de facteurs (réchauffement de la Méditerranée, fourniture d'habitats artificiels, etc.). Quoi qu'il en soit, la présence de mérous bruns adultes au large de la Camargue doit être traduite comme un signe positif de l'état de santé du peuplement de poissons et en aucun cas comme une menace pour le bon fonctionnement des DNAP (prédateur potentiel de juvéniles).

Tenue des modules (ensablement, dégradation)

Alors que l'état des DNAP était très bon en octobre 2014 (environ un mois après leur immersion), de nombreux signes de dégradations ont été observés en juin 2015 :

- les récifs Pods et tabulaires sont plus ou moins ensablés, les nodules des parpaings sont parfois comblés et donc inefficaces ;
- la plupart des gorgones artificielles des Pods sont cassées ou ont disparu ;
- quelques récifs trophiques sont déplacés ;
- un récif tabulaire et un récif sargasse ont disparu ; les fixations restant en place sur la sargasse laissent penser à une dégradation volontaire;
- un coin d'un récif pyramide est décroché, modifiant sensiblement la structure du module.

Néanmoins, les structures fournissent un habitat intéressant :

- les filières des sargasses et des Pods créent une belle structure en 3 dimensions et ont permis d'observer de jeunes stades juvéniles ;
- le sous-bassement des tabulaires et des Pods permet l'accueil de nombreux congres, parfois de grande taille (plus d'1 m LT);
- l'abri fourni par les récifs trophiques est utilisé par des juvéniles (sar à tête noire, mérou) mais également des adultes (sars, mostelle, blennies) ;
- les tabulaires forment des ragues très intéressantes qui accueillent des loups de grande taille.

Les efforts concernant la surveillance doivent être au moins maintenus voire mêmes augmentés pour garantir l'absence de prélèvements au sein de la réserve et l'occupation paisible des récifs.

Contraintes environnementales importantes

Les conditions de visibilité dans la zone d'étude sont souvent médiocres. La visibilité horizontale importante (3/5 m) rencontrée en juin 2015 est exceptionnelle, elle a permis de mieux appréhender les espèces mobiles (loups adultes, par exemple). Dans ces conditions, les poissons détectent les plongeurs avant leur arrivée sur un module et quittent le module avant même d'être dénombrés. Lors de la campagne de juin 2015, quelques prises de vue vidéo fixes à l'aide de GoPro® ont permis d'observer un certain nombre de poissons (essentiellement adultes) qui n'ont pas été vus en plongée (e.g. adultes de *Diplodus vulgaris* sur un module Pyramide).

4.5 Conclusion

Le suivi des DNAP montre, à ce stade, une utilisation des structures par un assemblage de poissons dont la diversité et la densité augmentent. Les DNAP ne jouent pas seulement le rôle de nurserie mais concentrent également une certaine densité de poissons adultes. La dégradation des structures est non négligeable, elle affecte la fonctionnalité des modules, mais il faut rappeler que ces modules ne sont pas destinés à rester en permanence sur le fond. L'efficacité des DNAP a accueillir des poissons est démontrée mais les prochaines campagnes prévues en 2016 devront apporter de nouveaux éléments sur les caractéristiques du peuplement qui colonise ces structures et leur efficacité en ce qui concerne les juvéniles.

5 Conclusion générale

L'ensemble des travaux programmés pour réaliser l'état initial de la réserve de Beauduc ont pu se dérouler comme prévu. Les pêches aussi bien que les plongées se sont déroulées dans des conditions météorologiques particulièrement favorables. Les pêches réalisées au filet comme au chalut confirment la forte variabilité saisonnière des peuplements liée aux traits de vie des espèces. Profondeur et stations ont un rôle mineur en comparaison de la composante saisonnière comme l'ont démontré Vacquier et al., en 2008. L'abondance, la biomasse et la composition des captures a fortement varié entre les 3 campagnes. Evidemment l'absence d'une quatrième campagne entre septembre et mars, c'est-à-dire à la saison froide peut être déplorée.

En ce qui concerne les pêches au filet des différences de composition spécifique sont néanmoins notées entre les stations situées plus près de la côte par rapport à celles du large. Le gradient de répartition des espèces en fonction de la profondeur explique d'ailleurs la différence de composition spécifique des captures faites au filet lors de cet état initial avec les captures faites en zone superficielle à la senne de plage par Heloin (2004). Remarque : Heloin n'avait pas non plus effectué d'échantillonnage l'hiver et il faudra peut-être envisager un jour de combler cette lacune aussi bien pour les pêches à la senne que pour les pêches au filet.

Les opérations de pêche se sont parfaitement bien déroulées. La quantité de poissons pêchée avec les filets trémails choisis pour les pêches scientifiques est relativement peu importante. Pour les pêcheurs elle est même décevante, mais nous pensons que les 18 pêches réalisées à chaque saison avec le même engin dans le golfe constitue un échantillon représentatif des espèces présentes de mars à septembre. Le but n'était d'ailleurs pas de capturer du poisson en quantité mais d'évaluer la richesse spécifique et le rendement moyen par pièce de 100 m afin de pouvoir suivre ces paramètres dans le temps. La proportion de poissons non commercialisables (abimés par les puces) dans les captures parait plus élevée (35%) sur la côte sableuse de Beauduc que lors des embarquements réalisés sur la côte rocheuse.

Les pêcheurs semblent plutôt satisfaits des pêches qu'ils ont pu faire pendant l'été 2014. Outre de bonnes conditions météorologiques, l'absence de chalutage dans la zone depuis plus de 2 ans pourrait, d'après certains, commencer à porter ses fruits. Comme en témoigne les observations que l'on peut faire sur Marine Traffic (internet) la pression des chalutiers demeure inquiétante pour le golfe. Des traces qui s'interrompent à l'entrée du golfe la nuit sont observées, ce qui ne peut être toléré. La présence des balises signalant la réserve est un progrès de ce point de vue, depuis fin 2014.

A condition de bénéficier d'une surveillance effective, les aires marines protégées sont un outil de gestion de la ressource halieutique en Méditerranée, comme le démontrent les exemples du Parc marin de la Côte Bleue (Leleu, 2012), du Parc national de Port-Cros (Bonhomme et al., 2013) et du Parc marin des Bouches de Bonifacio (Nardini, 2010), pour ne citer que ceux-là. Il faut attendre encore quelques années pour voir les effets de la mise en protection du golfe de Beauduc. En attendant, le partenariat entre gestionnaires, scientifiques et pêcheurs initié lors de cet état zéro a particulièrement bien motivé les

équipes et fonctionné. Cela constitue un excellent départ pour une bonne gestion de la réserve de Beauduc.

6 Bibliographie

ASTRUCH P., ROUANET E., GOUJARD A., SERRE C., 2013. Évolution des Zones Marines Protégées des Alpes-Maritimes. Contrat Conseil Général des Alpes-Maritimes — GIS Posidonie, GIS Posidonie publ., Marseille, Fr. : 55 p.

BAGLINIERE J.L., ELIE P. 2000.- Les aloses (Alosa alosa et Alosa fallax spp.) : écobiologie et variabilité des populations. Cemagref - INRA, Paris, 292 p.

BALTUS C.A.M., VAN DER VEER H.W., 1995.- Nursery areas of solenette Buglossidium luteum (Risso, 1810) and scaldfish Arnoglossus laterna (Walbaum, 1792) in the southern North Sea. Netherlands Journal of Sea Research, 34: 81-87.

BARONE M., DE RANIERI S., FABIANI O., PIRONE A., SERENA F., 2007.- Gametogenesis and maturity stages scale of Raja asterias Delaroche, 1809 (Chondrichtyes, Raijidae) from the South Ligurian Sea. Hydrobiologia, 580: 245-254.

BAUCHOT M.L., PRAS A., 1980, Guide des poissons marin d'Europe, Delachaux et Niestlé, Paris, 427P

BONHOMME P., LIGER P., LE DIREACH L., GOUJARD A., ROUANET E., BOUDOURESQUE C.F., 2013.- Suivi de l'effort de pêche professionnelle dans les eaux du Parc national de Port-Cros. Année 2012. Partenariat Parc national de Port- Cros & GIS Posidonie publ., Fr. : 1-66.

CABRAL, H. 2003.- Differences in growth rates of juvenile Solea solea and Solea senegalensis in the Tagus estuary, Portugal. J. the Marine Biological Association of the United Kingdom, 83: 861-868.

CLARKE M.W., KELLY C.J., CONNOLLY P.L., MOLLOY J.P., 2003.- A life history approach to the assessment and management of deepwater fisheries in the northeast atlantic. Journal of Northwest Atlantic Fishery Science, 31: 401-411.

CHAOUI L., HICHEM KARA M., FAURE E., QUIGNARD J.P., 2006.- Growth and reproduction of the gilthead seabream Sparus aurata in Mellah lagoon (north-eastern Algeria). Scientia Marina, 70 (3): 545-552.

CRIVELLI A.J., POIZAT G., 2001.- Timing of migration and exceptional growth of yoy Alosa fallax rhonadensis (Roule, 1924) in a lagoon in southern France. Bulletin Français De La Pêche Et De La Pisciculture, 362/363: 761-772.

DARNAUDE A., 2003.- Apports fluviaux en zone côtière et réseaux trophiques marins benthiques : transfert de matière organique particulaire terrigène jusqu'aux poissons plats au large du Rhône. Thèse de doctorat an Biosciences de l'Environnement, Chimie et Santé. Centre d'Océanologie de Marseille (UMR CNRS DIMAR 6540), 373 p.

DOREL D., (1986). Poissons de l'Atlantique Nord-Est : Relations Taille-Poids. http://archimer.ifremer.fr/doc/00000/1289/. Consulté le 15 juin 2014.

FRANCOUR P., NIERI M., URSHELER F., 1991. Les structures anti-chaluts du golfe de Beauduc (Camargue). Campagne de suivi 1991. Conseil Régional PACA, ADER PACA & GIS Posidonie. GIS Posidonie publ., Marseille, Fr. 42p.

GILLIERS C., AMARA R., BERGERON J.P., LE PAPE O., 2004.- Comparison of growth and condition indices of juvenile flatfish in different coastal nursery grounds. Environmental Biology of Fishes, 71: 189-198.

GUILLARD J., COLON M., 2000.-First results on migrating (Alosa fallax) and mullet (Mugil cephalus) echocounting in a lock on the Rhône River (France) using a split-beam sounder, and relationships with environmental data and fish caught. Aquatic Living Resources, 13: 327-330.

HARMELIN-VIVIEN M.L., 1981.- Description d'un petit chalut à perche pour récolter la faune vagile des herbiers de posidonies. Rapport de Communication Interne Mer Méditerranée, 27 (5): 199-200.

HELOIN Y., 2004.- Pré inventaire qualitatif et premiers travaux sur la dynamique de poisson du Golfe de Beauduc. Parc naturel régional de Camargue, 85 p.

HELOIN Y., 2005 – Rapport annexe à l'étude de faisabilité d'une aire marine protégée sur la zone marine du PNRC. Richesse biologique de la zone marine du Parc naturel Régional de Camargue : compilation des résultats obtenus entre 1955 et 2004. Master 2 Gestion des littoraux et des mers. Université de Montpellier, 61 pp.

JOUVENEL J.-Y., BACHET F., HARMELIN J.G., BELLAN-SANTINI D., 2004.- Suivi biologique d'une réserve marine de la Côte Bleue (Golfe de Marseille, Méditerranée, France). Revue d'Ecologie (Terre Vie), 59: 243-251.

LAGARDERE F., AMARA R., JOASSARD L., 1999.- Vertical distribution and feeding activity of metamorphosing sole, Solea solea, before immigration to the Bay of Vilaine nursery (northern Bay of Biscay, France). Environmental Biology of Fishes, 56: 213-228.

LE CORRE M., BAGLINIERE J.L., SABATIE R., MENELLA J.Y., PONT D., 1997.- Données récentes sur les caractéristiques morphologiques et biologiques de la population d'alose feinte du Rhône (Alosa fallax rhodanensis Roule, 1924). Bulletin Français De La Pêche Et De La Pisciculture, 346: 527-545.

LE DIREACH L., ASTRUCH P., BONHOMME D., BONHOMME P., ROUANET E., 2014. Opération Récifs Prado : suivi scientifique, biologique et technique dans la zone d'immersion (suivi obligatoire). Rapport final 2009-2014. Résultats. GIS Posidonie – Ville de Marseille, Fr. 1-474.

LE DIREACH L., OURGAUD M., GOUJARD A., BONHOMME P., 2013.- Suivi de l'effort de pêche professionnelle dans la réserve naturelle de Scandola (Corse). Données 2012. Contrat Parc naturel régional de Corse & GIS Posidonie publ., Fr. : 55 pp + annexes.

LELEU K., 2012.- Suivi et évaluation de la pêche professionnelle au sein d'une Aire Marine Protégée : protocoles d'enquêtes et indicateurs de pression et d'impact. Application au Parc Marin de la Côte Bleue. Thèse de Doctorat, Université Aix Marseille, 298 p.

LETOURNEUR Y., DARNAUDE A., SALEN-PICARD C., HARMELIN-VIVIEN M., 2001.-Spatial and temporal variations of fish assemblages in a shallow Mediterranean soft-bottom area (Gulf of Fos, France). Oceanologia Acta, 24 (3): 273-285.

MARCHAND J. & MASSON G., 1989. Processes of estuarine colonization by 0-group sole (Solea solea): hydrological conditions, behavior and feeding activity in the Vilaine estuary. Rapp. P.-V. Réun. Cons. Perm. Int. Explor. Mer, 191:287-295.

MENDIOLA D., ALVAREZ P., COTANO U., DE MURGUIA A.M., 2007.- Early development and growth of the laboratory reared north-east Atlantic mackerel Scomber scombrus L.. Journal of Fish Biology, 70: 911–933.

MORENO, 2004. Guía de los tiburones de aguas ibéricas, Atlántico nororiental y Mediterráneo. Ed. Omega, Barcelona, 315 p

MORAT F., LETOURNEUR Y., DIERKING J., PE'CHEYRAN C., BAREILLE G., BLAMART D., HARMELIN-VIVIEN M., 2014. The great melting pot. Common Sole population connectivity Aasessed by otolith and water fingerprints. Plos One, 9(1), e86585.

MORIN J., RIOU P., BESSINETON C., VEDIEU C., SIMON S., LEMOINE M., LE PAPE O., 1998.-Etude des nourriceries de la Baie de Seine orientale et de l'estuaire de la Seine. Synthèse des connaissances. Convention d'aide à la recherche n°96/71212618/BMF avec la Préfecture de Région de Haute-Normandie et le Port Autonome du Havre. Rapport final, 74 p + 2 volumes annexes : annexe 1, 198 p et annexe II, 90 p.

NARDINI M., 2010. Suivi des rendements et de la production de la peche artisanale au sein de la reserve Naturelle des Bouches de Bonifacio. Office de l'Environnement de la Corse. Rapport de Master II Fonctionnement des Ecosystemes et Anthropisation, Ecole Nationale Superieure Agronomique de Toulouse, Universite de Toulouse, 50 p + annexes.

PAMPOULIE C. 2001.- Demographic structure and life history traits of the common goby Pomatoschistus microps (Teleostei, Gobiidae) in a Mediterranean coastal lagoon (Rhône River Delta, France). Acta Oecologica, 22: 253-257.

PINEIRO C., SAINZA M., 2003.- Age estimation, growth and maturity of the European hake (Merluccius merluccius (Linnaeus, 1758)) from Iberian Atlantic waters. ICES Journal of Marine Science, 60: 1086-1102.

RILEY J.D., SYMONDS D.J., WOOLNER L., 1981.- On the factors influencing the distribution of 0-group demersal fish in coastal water. Rapports et Procès-Verbaux des Réunions/Conseil Permanent International pour L'Exploration de la Mer, 178: 223-228.

ROMANELLI M., COLASANTE A., SCACCO U., CONSALVO I., FINOIA M.G., VACCHI M., 2007.-Commercial catches, reproduction and feeding habits of Raja asterias (Chondrichtyes: Rajidae) in a coastal area of the Tyrrhenian Sea (Italy, northern Mediterranean). Acta Adriatica, 48 (1): 57-71.

SERENA F., MANCUSI C., BARONE M., ABELLA J., 2005.- Abundance and distribution of rays in the south Ligurian and north Tyrrhenian sea. International Council for the Exploration of the Sea, CM 2005/N, 20, 16 p.

TAI I., BENCHRIFI S., ZOUBAI A., RAMDANI M., YAHYAOUI A., BAZAIRI H., 2010.- Contribution à l'étude de la reproduction et de la croissance de la raie étoilée Raja asterias Delaroche, 1809 dans la région Nord Atlantique marocaine en 2005. Bulletin de l'Institut Scientifique, 32 (2): 73-80.

TRENKEL V.M., HUSE G., MACKENZIE B.R., ALVAREZ P., ARRIZABALAGA H., CASTONGUAY M., GOÑI N., GREGOIRE F., HATUN H., JANSEN T., JACOBSEN J.A., LEHODEY P., LUTCAVAGE M., MARIANI P., MELVIN G.D., NEILSON J.D., NØTTESTAD L., ÓSKARSSON G.J., PAYNE M.R., RICHARDSON D.E., SENINA I., SPEIRS D.C., (2014).- Comparative ecology of widely distributed pelagic fish species in the North Atlantic: Implications for modelling climate and fisheries impacts. Progress in Oceanography, xxx: xxx-xxx. Sous presse.

UICN France, MNHN, SFI & ONEMA (2010).- La Liste rouge des espèces menacées en France - Chapitre Poissons d'eau douce de France métropolitaine. Paris, France.

VACQUIER C., 2007.- Inventaire de la macrofaune benthique du golfe de Beauduc en vue de l'élaboration d'un protocole de suivi biologique du littoral marin du parc naturel regional de Camargue. Parc naturel régional de Camargue, 65 pp.

VACQUIER C., MAROBIN-LOUCHE D., HEMERY G., LETOURNEUR Y., 2008, Premières investigations sur la structure spatiale et saisonnière des peuplements de poissons des fonds meubles du golfe de Beauduc. Cybium, 32(3):253-263.

VASCONCELOS R.P., REIS-SANTOS P., FONSECA V., RUANO M., TANNER S., COSTA M.J., CABRAL H.N., 2009.- Juvenile fish condition in estuarine nurseries along the Portuguese coast. Estuarine, Coastal and Shelf Science, 82: 128-138.

7 Annexes

Annexe 1 : Température (°C) et salinité (g/l) mesurées en surface et à 10 m de profondeur au moment des pêches au filet.

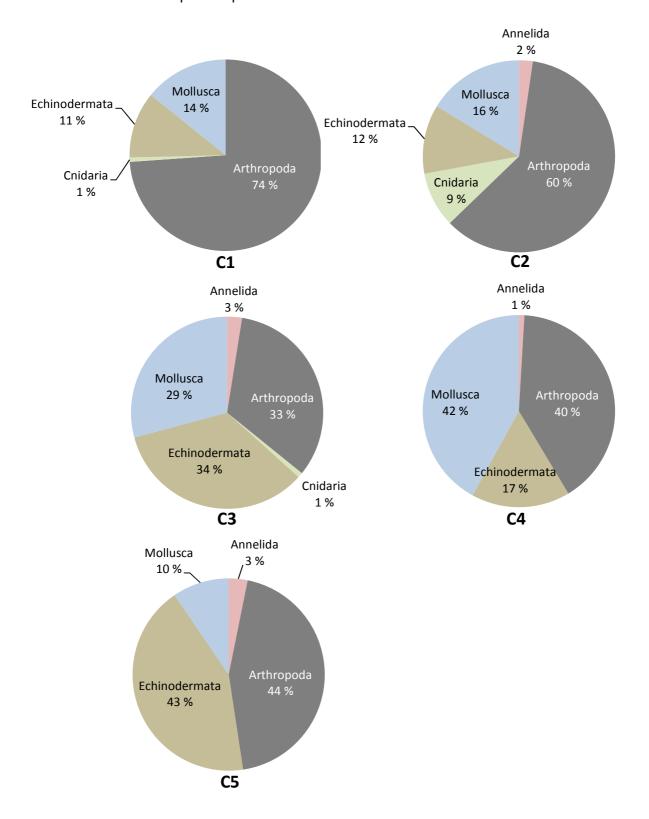
printemps (j	uin 2014)																		
Stations			1			2			3			4			5			6	
Sonde	Profondeur (m)	Température (°C)	Salinité	% oxygéne dissous	Т	S	% O2												
05/06/2014	0	16.61	38.03	93.3	16.46	37.94	100,9	16.82	37.43	120									
05/06/2014	10	16.44	38.03	92.5	16.17	38	98.1	16.81	37.71	112.6									
06/06/2014	0	18.26	36.12	108.7	17.74	38.14	103.8	17.92	38.14	104.1	18.01	38.06	105.8	18.71	38.1	102.6	18.52	38.15	109.6
06/06/2014	10	17.3	38.07	106.6	17.4	38.17	104.2	17.28	38.23	104.4	17.13	38.07	105.5	17.04	38.15	101.6	16.84	38.08	107.6
07/06/2014	0										18.66	29.55	110.8	18.89	31.38	121.2	18.7	31	115.7
07/06/2014	10										17.73	38.01	107.9	18.79	38.15	113.4	18.93	38	109.5
été (septem	bre 2014)																		
Stations			1			2			3										
Sonde	Profondeur (m)	Température (°C)	Salinité	% oxygéne dissous	Т	S	% O2	Т	S	% O2									
06/09/2014	0	19.8	31.46		19.89	31.47	48.26	19.5	34.14	51.34									
		Conductivité																	
		48.27																	

Annexe 2 : Température (°C) et salinité (g/l) en surface et à 10 m de profondeur mesurées avant les chalutages (demande en oxygène - DO% à considérer avec précautions).

Station	Trait	Profondeur	Température	Salinité	DO%	Date
3	1	0	17.53	46.49	57.8	02/06/2014
3	1	10	16.11	46.51	50.9	02/06/2014
2	1	0	17.29	46.61	21.2	02/06/2014
2	1	10	16.03	46.67	21.8	02/06/2014
5	1	0	17.19	46.82	28.4	02/06/2014
5	1	10	16.23	46.79	27.9	02/06/2014
1	1	0	17.28	46.78	37.7	02/06/2014
1	1	10	16.31	46.75	36.6	02/06/2014
4	1	0	17.7	46.71	40.9	02/06/2014
4	1	10	17.38	46.84	40.2	02/06/2014
3	2	0	17.59	46.89	40.5	02/06/2014
3	2	10	16.22	46.73	40	02/06/2014
2	2	0	16.7	37.85	80.9	03/06/2014
2	2	10	16.06	38.11	81.2	03/06/2014
5	2	0	16.66	37.89	72.7	03/06/2014
5	2	10	16.62	37.88	71	03/06/2014
1	2	0	16.68	38.08	59.6	03/06/2014
1	2	10	16.63	38.06	57	03/06/2014
4	2	0	16.82	38.09	57.3	03/06/2014
4	2	10	16.77	38.09	58.5	03/06/2014
3	3	0	16.85	37.99	56.8	03/06/2014
3	3	10	16.79	38.01	56	03/06/2014
2	3	0	16.62	38.15	53.7	03/06/2014
2	3	10	16.33	38.18	58.6	03/06/2014
5	3	0	16.55	38.02	54.6	03/06/2014
5	3	10	16.35	38.14	52.9	03/06/2014
1	3	0	17.05	38.12	56.5	03/06/2014
1	3	10	16.82	38.12	55.9	03/06/2014
4	3	0	17.18	38.18	55.9	03/06/2014
4	3	10	16.8	38.28	60.4	03/06/2014
3	4	0	17.32	38.12	63.1	03/06/2014
3	4	10	16.21	38.2	65.5	03/06/2014
2	1	0	12.07	33.55	82.3	23/03/2015
2	1	10	11.67	35.39	87.2	23/03/2015
3	1	0	12.28	35.28	96.4	23/03/2015
3	1	10	11.63	35.29	91.1	23/03/2015
5	1	0	11.8	35.12	96.8	23/03/2015
5	1	10	11.48	35.12	87.3	23/03/2015
1	1	0	12.62	33.52	95	23/03/2015
1	1	10	11.58	35.8	80	23/03/2015
4	1	0	12.8	33.27	88.8	23/03/2015
4	1	10	12.2	36.36	72.2	23/03/2015
2	2	0	12.63	35.42	77.1	23/03/2015
2	2	10	11.75	35.42	67.2	23/03/2015
3	2	0	13.32	32.06	68.5	23/03/2015
3	2	10	11.77	35.76	59	23/03/2015
5	2	0	13.21	31.85	62.8	23/03/2015
5	2	10	13.21	35.28	62.8	23/03/2015
1	2	0	12.21	34.45	95.2	23/03/2015
1	2	10	11.7	35.54	95.2 187	23/03/2015
4	2	0	12.87	31.95	93	23/03/2015
4	2	10	11.53	35.9	86.7	23/03/2015
2	3	0	12.67	31.1	113.9	24/03/2015
2	3	10	11.87	35.73	103.4	24/03/2015
3	3	0	12.86	31.54	103.4	24/03/2015
3	3	10	11.58	35.93	90	24/03/2015
5	3	0	12.73	32.49	98.1	24/03/2015
5	3	10	11.86	36.11	79.7	24/03/2015
1	3	0	12.82	32.2	79.7 85.7	24/03/2015
1	3	10	12.82	35.69	73.1	24/03/2015
4	3	0	13.06	30.05	71.8	24/03/2015
4	3	10	12.4	36.17	62.2	24/03/2015
4	3	10	12.4	50.17	02.2	24/03/2013

Annexe 3 : Liste des invertébrés récoltés au chalut à perche en juin 2014 (été) et mars 2015 (hiver)

Famille	Genre espèce	Eté	Hiver
	Annelida		
ampharetidae	Ampharete sp	Х	
Glyceridae	Glycera tridactyla	Х	
	Glycera unicornis	Х	
nd	nd	Х	
Oweniidae	Owenia fusiformis	Х	
A	rthropoda		
Corystidae	Corystes cassivelanus		х
Crangonidae	Crangon crangon		х
	Philocheras monacanthus	Х	
	Philocheras sp	Х	
Dorippidae	Medorippe lanata	Х	Х
Ebaliinae	Ebalia nux	Х	
Ethusidae	Ethusa mascarone	х	
Galatheidae	nd	х	
Goneplacidae	Goneplax sp	х	Х
Holognathidae	Cleantis prismatica	х	
Inachidae	Inachus dorsettensis	Х	Х
	Inachus sp	Х	
	Macropodia sp	Х	Х
Leucosiidae	Ilia nucleus	х	
Leucosiidea	Ebalia granulosa	х	
Paguridae	Anapagurus	х	
<u> </u>	Pagurus cuanensis	х	
Pilumnidae	Pilumnus hirtellus	х	х
Polybiidae	Liocarcinus corrugatus	х	
	Liocarcinus depurator	х	х
	Liocarcinus vernalis		X
Porcellanidae	Pisidia longicornis	х	X
Processidae	Processa sp	X	X
	Cnidaria		
Pennatulacea (ordre)		Х	
Diphyidae		Х	
nd		x	
	inodermata		
Amphiuridae	Amphiura chiajei	Х	
Astropectinidae	Astropecten irregularis	X	Х
Cucumariidae	Cucumaria planci	X	
- /	Leptopentacta elongata	X	
Loveniidae	Echinocardium cordatum	X	
Ophiuridae	Ophiura ophiura	X	Х
	Mollusca	,,	
Acteonidae	Acteon sp		х
Aporrhaidae	Aporrhais pespelecani	х	X
Calyptraeidae	Calyptrea chimensis	X	X
Cardiidae	Acanthocardia aculata	X	
-3.4	Acanthocardia paucicostata	x	х
	Acanthocardia tuberculata	X	X
	, learning cardia tabellediata	^	_ ^



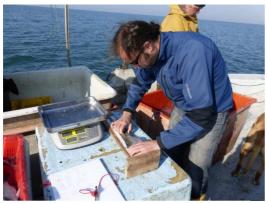
Famille	Genre espèce	Eté	Hiver
Cassidae	Galeodea echinophora	Х	
Corbulidae	Corbula gibba	Х	Х
	Lentidium mediterraneum	х	
Dentaliidae	Dentalium ineaquicostatum	х	Х
	nd	х	х
Mactridae	Lutraria lutraria		х
	Mactra sp		х
	Mactra stultorum	Х	х
	Spisula subtruncata	Х	х
Muricidae	Bolinus brandaris	Х	х
	Hadriania craticulata	Х	Х
Nassaridae	Nassarius mutabilis	Х	Х
	Nassarius pygmatus	Х	Х
	Nassarius sp	Х	
Naticidae	Lunatia sp	Х	
	Naticarius hebraeus	Х	
	Naticarius stercusmuscarum	Х	
Nuculanidae	Nuculana pella	Х	
Nuculidae	Nucula sp	Х	x
	Nuculav sulcata	Х	
Nudibranchia	nd	Х	
Ostreidae	nd	Х	
	Ostrea	Х	
Pectinidae	Aequipectenopercularis	Х	
	Mimachlamys varia	Х	х
Pharidae	Ensis ensis	Х	X
	Pharus legumen	Х	X
Pholadidae	Barnea candida	Х	
Psammobiidae	Gabri depressa	Х	
Sepiolidae	Sepiola sp	X	х
Solecurtidae	Azorinus chamasolen	X	
	nd	X	
	Solecurtus strigilatus	Х	
Solenidae	Solen marginatus	X	
Tellinidae	Tellina albicans	X	
	Tellina pulchella	Х	х
	nd	X	x
Turritellidae	Turitella communis	X	x
Veneridae	Chamela gallina	X	x
- C.ICIIWWC	Dosinia lipinus	X	X
	Mysia undata	X	_ ^
	Pitar rudis	X	
	Venerupis corrugata		
		X	
	Venerupis sp Venerupis romboides	Х	X

<u>Annexe 4</u>: Proportions des phylums de macro-invertébrés échantillonnés au chalut à perche dans les 5 stations au printemps 2014.

<u>Annexe 5</u> : Liste des espèces de téléostéens et d'élasmobranches capturées dans le golfe de Beauduc lors de l'état initial.

				FILET TREMAIL			
Familles	Espèces	Filet	Chalut	Hiver	Printemps	Eté	
Bothidae	Arnoglossus laterna Walbaum, 1792		Х		Х		
Callionymidae	Callionymus risso Lesueur, 1814		Х		Х		
Carangidae	Trachinotus ovatus Linnaeus, 1758	Х				Х	
Carangidae	Trachurus picturatus Bowdich, 1825	Х			Χ		
Carangidae	Trachurus trachurus Linnaeus, 1758	Х			Χ	Χ	
Carcharhinidae	Prionace glauca Linnaeus, 1758	Х			Х		
Clupeidae	Alosa fallax Lacepède, 1803	Х		Χ	Х		
Clupeidae	Sardina pilchardus Walbaum, 1792	Х	Χ		Χ		
Clupeidae	Sardinella aurita Valenciennes, 1847	Х			Χ		
Clupeidae	Sprattus sprattus Linnaeus, 1758		Χ		Χ		
Engraulidae	Engraulis encrasicolus Linnaeus, 1758	Х	Х	Χ	Х		
Gobiidae	Gobius niger Linnaeus, 1758		Х		Х		
Gobiidae	Pomatoschistus microps Krøyer, 1838		Χ		Χ		
Gobiidae	Pomatoschistus minutus Pallas, 1770		Χ		Χ		
Gobiidae	Pomatoschistus sp. (marmoratus Risso, 1810		Χ		Χ		
Merluccidae	Merluccius merluccius(Linnaeus, 1758	Х		Χ	Х	Х	
Moronidae	Dicentrarchus labrax Linnaeus, 1758	Х		Χ		Х	
Mugilidae	Liza ramada Risso, 1827	Х		Х	Х		
Mugilidae	Liza saliens Risso, 1810	Х		Χ			
Mugilidae	Mugil cephalus Linnaeus, 1758	Х		Χ			
Mullidae	Mullus barbatus Linnaeus 1758	Х				Х	
Ophichthidae	Dalophis imberbis Delaroche, 1809	Х		Χ		Χ	
Ophichthidae	Myrichthys pardalis Valenciennes, 1839		Χ		Χ		
Pleuronectidae	Pleuronectes platessa Linnaeus, 1758	Х		Χ			
Rajidae	Raja asterias Delaroche, 1809	Х		Χ	Х	Х	
Rajidae	Raja montagui Fowler, 1910	Х				Χ	
Scombridae	Sarda sarda Bloch, 1793	Х			Х	Χ	
Scombridae	Scomber scombrus Linnaeus, 1758	Х		Χ	Χ	Χ	
Scophthalmidae	Scophthalmus maximus Linnaeus, 1758	Х		Χ			
Scophthalmidae	Scophthalmus rhombus Linnaeus, 1758	Х			Χ	Χ	
Soleidae	Buglossidium luteum Risso, 1810		Х		Х		
Soleidae	Pegusa impar Bennett, 1831	Х	Χ		Χ	Χ	
Soleidae	Pegusa lascaris Risso, 1810	Х		Χ	Χ		
Soleidae	Solea senegalensis Kaup, 1858	Х		Χ	Χ	Χ	
Soleidae	Solea solea Linnaeus, 1758	Х		Χ	Χ	Χ	
Sparidae	Boops boops Linnaeus, 1758	Х		Χ	Х	Х	
Sparidae	Diplodus sargus sargus Linnaeus, 1758	Х		Χ	Χ	Χ	
Sparidae	Diplodus vulgaris Geoffroy Saint Hilaire 1817	Χ				Х	
Sparidae	Pagellus acarne Risso, 1827	Χ			Χ	Х	
Sparidae	Pagellus erythrinus Linnaeus, 1758	Χ		Χ	Χ	Χ	
Sparidae	Sarpa salpa Linnaeus, 1758	Χ				Χ	
Sparidae	Sparus aurata Linnaeus, 1758	Х		Χ	Χ	Х	

Familles	Espèces	Filet	Chalut	Hiver	Printemps	Eté
Sphyraenidae	Sphyraena viridensis Cuvier, 1829	Х			Х	
Syngnathidae	Hippocampus guttulatus Cuvier 1829		Х			
Torpedinidae	Torpedo marmorata Risso, 1810	Х	Χ	Х	Χ	Χ
Torpedinidae	Torpedo torpedo Linnaeus, 1758	Х	Χ	Х	Χ	Χ
Triakidae	Mustelus mustelus Linnaeus, 1758	Х			Х	Х
Triglidae	Chelidonichthys lucerna Linnaeus, 1758	Х	Х	Χ	Χ	Х
Triglidae	Chelidonichthys obscurus Walbaum, 1792	Х			Χ	Χ
Triglidae	Lepidotrigla cavillone Lacepède, 1801	Х	Χ		Χ	
Triglidae	Trigloporus lastoviza Bonnaterre, 1788	Χ			Χ	
Uranoscopidae	Uranoscopus scaber Linnaeus, 1758	Х			Х	


Annexe 6 : Campagnes de pêches aux filets de mars et juin 2014 (© Laurence Le Diréach).

Pose des filets avec Daniel Deschampes

Relève des filets avec Georges Gauzargues

Mesure et pesée de Sparus aurata

A. fallax, S. scombrus et C. lucerna

Raja asterias

Scophthalmus maximus et Solea solea

Dalophis imberbis (Delaroche, 1809)

Prionace glauca (juvénile, le 07/06/2014)

<u>Annexe 7</u>: Campagne d'échantillonnage au chalut à perche de juin 2014 (© Laurence Le Diréach) et plongées de prospection des zones de lauzes (© Adrien Goujard et Patrick Astruch).

Navire océanographique : Antedon II

Chalut à perche

Descente du chalut à perche

Remontée du chalut à perche

Collecte du chalutage

Débris coquilliers de la station C4

Reste de lauze

Zone de lauze

<u>Annexe 8</u>: Campagne d'échantillonnage au chalut à perche de mars 2015 (©Laureline Chassaing & Laurence Le Diréach).

<u>Annexe 9</u>: Calendrier des travaux

Planning éta																
	Objet	juil-13	sept-13	oct-13	nov-13	déc-13	janv-14	févr-14	mars-14	avr-14	mai-14	juin-14	juil-14	août-1		
Accompagnement scientifique	Programmation scientifique GIS/MIO/Parc	réunion de démarrage 27/06/13						réunion d'avancement juvéniles 11/02/14								
	Réunions pêcheurs	mas de Rousty (pré-) 25/07/13				Stes Marie 16/12/13										
	Accompagnement et formation des agents								embarque- ments agents			embarque- ments agents		·		
Suivi scientifique	Pêches scientifiques (adultes) - état zéro							pêches (hiver)	10-13/03/14			orintemps) 06/14	premières analyses données			
	Pêche scientifiques (juvéniles) - état zéro	réunion de démarrage (cadrage méthodologi									chalutages 2-4/06/14 (état zéro - saison chaude)		premières analyses données			
	Suivi des structures immergées (juvéniles)	que)											Plongée sur site 15/7/14	Immersion modules		
	Objet	sept-14	oct-14	nov-14	déc-14	janv-15	févr-15	mars-15	avr-15	mai-15	juin-15	juil-15	août-15	sept-1		
Accompagnement scientifique	Programmation scientifique GIS/MIO/Parc	COPIL PNR Camargue			réunion d'avance- ment 11/12/14	·				Conseil Sci. 06/05/14	·			réunion de restitution		
	Accompagnement et formation des agents															
Suivi scientifique	Pêches scientifiques (adultes) - état zéro	pêches (été) 3-6/09/14	Master Julien Bonhomme							Analyse e	e et restitution des résultats					
	Pêche scientifiques (juvéniles) - état zéro							s 23-24/03/15 saison froide)		Analyse e	et restitution	des résultats		réunion de restitution		
	Suivi des structures immergées (juvéniles)		Plongée comptages 3/10/14	· · · · · · · · · · · · · · · · · · ·					CT DNAP 06/05/15	Plongée comptages 25/06/15						
				accompagnement scientifique réunions formation des agents investigations (pêches expérimentales)							analyse des	ns (récifs arti données et n nersion des m		entaux		

Réalisé grâce au financement de :

